精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体中,点在线段上运动,则下列判断中正确的是( )

①平面平面

平面

③异面直线所成角的取值范围是

④三棱锥的体积不变.

A. ①② B. ①②④ C. ③④ D. ①④

【答案】B

【解析】

连接DB1,容易证明DB1面ACD1 ,从而可以证明面面垂直;

连接A1B,A1C1容易证明平面BA1C1面ACD1,从而由线面平行的定义可得;

分析出A1P与AD1所成角的范围,从而可以判断真假;

=,C到面 AD1P的距离不变,且三角形AD1P的面积不变;

对于,连接DB1,根据正方体的性质,有DB1面ACD1 ,DB1平面PB1D,从而可以证明平面PB1D⊥平面ACD1正确.

连接A1B,A1C1容易证明平面BA1C1面ACD1,从而由线面平行的定义可得 A1P∥平面ACD1正确.

当P与线段BC1的两端点重合时,A1P与AD1所成角取最小值

当P与线段BC1的中点重合时,A1P与AD1所成角取最大值

故A1P与AD1所成角的范围是错误;

=,C到面AD1P的距离不变,且三角形AD1P的面积不变.

三棱锥A﹣D1PC的体积不变正确;

正确的命题为①②④

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】双曲线C的渐近线方程为,一个焦点为F0,﹣8),则该双曲线的标准方程为_____.已知点A(﹣60),若点PC上一动点,且P点在x轴上方,当点P的位置变化时,△PAF的周长的最小值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国武汉于20191018日至20191027日成功举办了第七届世界军人运动会.来自109个国家的9300余名运动员同台竞技.经过激烈的角逐,奖牌榜的前3名如下:

国家

金牌

银牌

铜牌

奖牌总数

中国

133

64

42

239

俄罗斯

51

53

57

161

巴西

21

31

36

88

某数学爱好者采用分层抽样的方式,从中国和巴西获得金牌选手中抽取了22名获奖代表.从这22名中随机抽取3人, 则这3人中中国选手恰好1人的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”,为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:

由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且有很强的线性相关关系.

(1)求关于的线性回归方程;(结果保留三位小数);

(2)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;

(3)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?

参考数据:.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)讨论的单调性;

(2)当时,证明:

(3)试比较 ,并证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三年级在返校复学后,为了做好疫情防护工作,一位防疫督察员要将2盒完全相同的口罩和3盒完全相同的普通医用口罩全部分配给3个不同的班,每个班至少分得一盒,则不同的分法种数是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对于函数有下述四个结论:

①函数在其定义域上为增函数;

②对于任意的,都有成立;

有且仅有两个零点;

④若在点处的切线也是的切线,则必是零点.

其中所有正确的结论序号是(

A.①②③B.①②C.②③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四个小球,分别写有”“”“”“四个字,有放回地从中任取一个小球,取到就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生14之间取整数值的随机数,且用1234表示取出小球上分别写有”“”“”“四个字,以每两个随机数为一组,代表两次的结果.经随机模拟产生了20组随机数:

13 24 12 32 43 14 24 32 31 21

23 13 32 21 24 42 13 32 21 34

据此估计,直到第二次就停止概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为探索课堂教学改革,惠来县某中学数学老师用传统教学和导学案两种教学方式,在甲、乙两个平行班进行教学实验.为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图.记成绩不低于70分者为成绩优良”.

Ⅰ)分析甲、乙两班的样本成绩,大致判断哪种教学方式的教学效果更佳,并说明理由;

Ⅱ)由以上统计数据完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为成绩是否优良与教学方式有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

参考公式:,其中是样本容量.

独立性检验临界值表:

查看答案和解析>>

同步练习册答案