精英家教网 > 高中数学 > 题目详情
已知两点,若直线上存在点P,使得,则称该直线为“A型直线”。给出下列直线:①;②;③;④,其中是“A型直线”的是                  
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的长轴,离心率为坐标原点,过的直线轴垂直,是椭圆上异于的任意一点,为垂足,延长,使得,连接并延长交直线的中点
(1)求椭圆方程并证明点在以为直径的圆
(2)试判断直线与圆的位置关系
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)一动圆与已知相外切,与相内切.
(Ⅰ)求动圆圆心的轨迹C;
(Ⅱ)若轨迹C与直线y="kx+m" (k≠0)相交于不同的两点M、N,当点A(0,1)满足||=|| 时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程表示椭圆,则的取值范围是(    )
A.(5,9)B.(5,+∞)
C.(1,5)∪(5,9)D.(-∞,9)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知椭圆C: 过点(1,  ),F1F2分别为其左、右焦点,且离心率e= ;
(1)求椭圆C的方程;
(2)设过定点的直线与椭圆C交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的左、右焦点分别为,其中也是抛物线的焦点,在第一象限的交点,且
(1)求椭圆的方程;
(2)已知菱形的顶点在椭圆上,顶点在直线上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设向量,过定点,以方向向量的直线与经过点,以向量为方向向量的直线相交于点P,其中
(1)求点P的轨迹C的方程;
(2)设过的直线与C交于两个不同点M、N,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为过点和上顶点的直线,下顶点的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的动弦, 若为线段的中点,线段的中垂线和x轴交点为,试求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在坐标原点,焦点在x轴上,以其两个焦点和短轴的两个端点为顶点的
四边形是一个面积为4的正方形,设P为该椭圆上的动点,CD的坐标分别是,则PC·PD的最大值为   

查看答案和解析>>

同步练习册答案