精英家教网 > 高中数学 > 题目详情

【题目】阅读下列材料,回答所提问题:设函数,①的定义域为,其图像是一条连续不断的曲线;②是偶函数;③上不是单调函数;④恰有个零点,写出符合上述①②④条件的一个函数的解析式是______;写出符合上述所有条件的一个函数的解析式是______.

【答案】

【解析】

根据函数的奇偶性,单调性、零点和函数的图像可写出相应的函数解析式,得出答案.

由题意得:符合上述①②④条件的一个函数的解析式可以是

因为的定义域为,其图像是一条连续不断的抛物线,所以函数满足①;

因为,所以函数是偶函数;

因为当时,,所以函数恰有两个零点:

所以函数满足条件①②④;

符合上述①②③④条件的一个函数的解析式可以是

理由如下:作出函数的图象如下图所示,则函数的图像是一条连续不断的曲线,

函数的图像关于y轴对称,所以函数是偶函数,

上单调递减,在上单调递增,所以函数上不是单调函数,

且当时,,所以函数恰有两个零点:.

所以函数满足条件①②③④.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,是正三角形,且平面平面ABCEG分别为ABBC的中点.

(Ⅰ)证明:平面ABD

(Ⅱ)若F是线段DE的中点,求AC与平面FGC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,四边形为平行四边形,中点.

1)求证:平面

2)求证:平面平面

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)若,求函数的图像在点处的切线方程;

2上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(Ⅰ)当时,求的单调区间;

(Ⅱ)设的极小值点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆在左、右焦点分别为,上顶点为点,若是面积为的等边三角形.

1)求椭圆的标准方程;

2)已知是椭圆上的两点,且,求使的面积最大时直线的方程(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百、千位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于200的概率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调区间;

(2)若函数有两个零点,求满足条件的最小正整数的值;

(3)若方程,有两个不相等的实数根,比较与0的大小.

查看答案和解析>>

同步练习册答案