精英家教网 > 高中数学 > 题目详情
已知O为坐标原点,
OM
=(-1,1),
NM
=(-5,5)集合A={
OR
||
RN
|=2},
OP
OQ
∈A且
MP
MQ
(λ∈r,且λ≠0)则
MP
MQ
=
46
46
分析:根据向量的线性运算,可得点N坐标为(4,-4)且R点的轨迹是以N为圆心,半径为2的圆.进而得到P、Q在圆N上,且M、P、Q三点共线,在Rt△MNS中利用勾股定理,并结合圆的切割线定理即可算出
MP
MQ
的值.
解答:解:∵
OM
=(-1,1),
NM
=(-5,5)
∴向量
ON
=
OM
-
NM
=(4,-4),即点N坐标为(4,-4)
∵集合A={
OR
||
RN
|=2}
∴点R到N的距离等于2(常数),故R点的轨迹是以N为圆心,半径为2的圆
OP
OQ
∈A且
MP
MQ
(λ∈r,且λ≠0)
∴P、Q在圆N上,且M、P、Q三点共线
设过M的直线与圆N相切于点S,连接NS、NM,则
Rt△MNS中,MN=5
2
,NS=2,可得MS2=MN2-NS2=50-4=46
由切割线定理,可得
MP
MQ
=
MS
2=46
故答案为:46
点评:本题以向量为载体,求动点的轨迹方程并求数量积
MP
MQ
的值.着重考查了平面向量的线性运算、平面向量数量积的运算和动点轨迹方程的求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,
OA
=(-4,0),
AB
=(8,0)
,动点P满足|
PA
|+|
PB
|=10

(1)求动点P的轨迹方程;
(2)求
PA
PB
的最小值;
(3)若Q(1,0),试问动点P的轨迹上是否存在M、N两点,满足
NQ
=
4
3
QM
?若存在求出M、N的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若
OA
AF
=-4,则点A的坐标是
(1,2)或(1,-2)
(1,2)或(1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点F,以OF为直径作圆交双曲线的渐近线于异于原点O的两点A、B,若(
AO
+
AF
)•
OF
=0,则双曲线的离心率e为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•沈阳二模)已知O为坐标原点,点M的坐标为(a,1)(a>0),点N(x,y)的坐标x、y满足不等式组
x+2y-3≤0
x+3y-3≥0
y≤1
.若当且仅当
x=3
y=0
时,
OM
ON
取得最大值,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,对于函数f(x)=asinx+bcosx,称向量
OM
=(a,b)
为函数f(x)的伴随向量,同时称函数f(x)为向量
OM
的伴随函数.记
ON
=(1,
3
)
的伴随函数为h(x),则使得关于x的方程h(x)-t=0在[0,
π
2
]
内恒有两个不相等实数解的实数t的取值范围是
[
3
,2)
[
3
,2)

查看答案和解析>>

同步练习册答案