精英家教网 > 高中数学 > 题目详情

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,则 ; ②若;③若,则; ④若,则,其中正确命题的序号是( )

A.①和②B.②和③C.③和④D.①和④

【答案】B

【解析】

利用线面平行的性质可得:若mαnα,则mn、相交或为异面直线;利用平面平行的传递性和平行平面的性质可得:若αββγ,则αγ,又mα,则mγ利用线面垂直的性质可得:,则利用面面垂直的性质可得:若αγβγ,则αβ或相交.

mαnα,则mn、相交或为异面直线,不正确;

αββγ,则αγ,又mα,则mγ;正确;

,则正确;

αγβγ,则αβ或相交,不正确.

综上可知:②和③正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过两点,如图所示,且函数的值域为.过该函数图象上的动点轴的垂线,垂足为,连接.

(I)求函数解析式

的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某高中随机抽取部分高二学生,调査其到校所需的时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中到校所需时间的范围是,样本数据分组为.

(1)求直方图中的值;

(2)如果学生到校所需时间不少于1小时,则可申请在学校住宿.若该校录取1200名新生,请估计高二新生中有多少人可以申请住宿;

(3)以直方图中的频率作为概率,现从该学校的高二新生中任选4名学生,用表示所选4名学生中“到校所需时间少于40分钟”的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2+bx(a为实常数).
(1)若a=﹣2,b=﹣3,求f(x)的单调区间;
(2)若b=0,且a>﹣2e2 , 求函数f(x)在[1,e]上的最小值及相应的x值;
(3)设b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.

1)求图中m的值;

2)根据频率分布直方图,估计这200名学生的平均分(同一组中的数据用该组区间的中间值作代表)和中位数(四舍五入取整数);

3)若这200名学生的数学成绩中,某些分数段的人数x与英语成绩相应分数段的人数y之比如下表所示,求英语成绩在的人数.

分数段

[7080

[8090

[90100

[100110

[110120

xy

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如表所示:

组号

分组

频数

频率

第1组

5

0.05

第2组

a

0.35

第3组

30

b

第4组

20

0.20

第5组

10

0.10

合计

n

1.00

(1)求出频率分布表中的值,并完成下列频率分布直方图;

(2)为了能对学生的体能做进一步了解,该校决定在第1,4,5组中用分层抽样取7名学生进行不同项目的体能测试,若在这7名学生中随机抽取2名学生进行引体向上测试,求第4组中至少有一名学生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数φ(x)= ,a>0
(1)若函数f(x)=lnx+φ(x),在(1,2)上只有一个极值点,求a的取值范围;
(2)若g(x)=|lnx|+φ(x),且对任意x1 , x2∈(0,2],且x1≠x2 , 都有 <﹣1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 + =1(a>b>0)的左焦点为F,右顶点为A,离心率为 .已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为 ,求直线AP的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是(  )
A.a=2b
B.b=2a
C.A=2B
D.B=2A

查看答案和解析>>

同步练习册答案