精英家教网 > 高中数学 > 题目详情

【题目】求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.

【答案】解:因为圆过A、B两点,所以圆心在线段AB的垂直平分线上.由kAB==﹣1,
AB的中点为(2,3),
故AB的垂直平分线的方程为y﹣3=x﹣2,即x﹣y+1=0.
又圆心在直线y=0上,
因此圆心坐标是方程组的解,即圆心坐标为(﹣1,0)

半径r=
所以得所求圆的标准方程为(x+1)2+y2=20.
因为M1到圆心C(﹣1,0)的距离为,|M1C|<r,所以M1在圆C内;而点M2到圆心C的距离|M2C|=,所以M2在圆C外.
【解析】要求圆的标准方程,只要求得圆心坐标和圆的半径即可,根据垂径定理可知圆心在线段AB的垂直平分线上,所以求出线段AB的中垂线方程与直线y=0联立即可求出圆心坐标,然后利用两点间的距离公式求出AO的长即为半径,然后分别求出M1和M2到圆心的距离与半径比较大小即可得到与圆的位置关系。
【考点精析】利用点与圆的位置关系对题目进行判断即可得到答案,需要熟知点与圆的位置关系有三种:若,则在圆外;在圆上;在圆内.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2C﹣3cos(A+B)=1
(1)求角C的大小;
(2)若c= ,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古代数学名著《九章算术》中的“盈不足”问题知两鼠穿垣.今有垣厚5尺,两鼠对穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.问:何日相逢?题意是:由垛厚五尺(旧制长度单位, 尺= 寸)的墙壁,大小两只老鼠同时从墙的两面,沿一直线相对打洞.大鼠第一天打进尺,以后每天的速度为前一天的倍;小鼠第一天也打进尺,以后每天的进度是前一天的一半.它们多久可以相遇?

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),
[240,260),[260,280),[280,300)分组的频率分布直方图如图.

(1)求直方图中x的值;
(2)在月平均用电量为,[220,240),[240,260),[260,280)的三用户中,用分层抽样的方法抽取10居民,则月平均用电量在[220,240)的用户中应抽取多少户?
(3)求月平均用电量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,讨论函数的单调性;

2)若时, 恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的不恒为零的函数,且对于任意实数x,y满足:f(2)=2,f(xy)=xf(y)+yf(x),an= (n∈N*),bn= (n∈N*),考查下列结论:
①f(1)=1;②f(x)为奇函数;③数列{an}为等差数列;④数列{bn}为等比数列.
以上命题正确的是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角 的对边分别为 ,已知

1的值;

2,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一个周期内的图象如图所示,则函数的解析式为 . 直线y= 与函数y=f(x)(x∈R)图象的所有交点的坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的前n项和为Sn , 已知S1 , S3 , S2成等差数列,
(1)求{an}的公比q;
(2)求a1﹣a3=3,求Sn

查看答案和解析>>

同步练习册答案