£¨¢ñ£©ÒÀÌâÒâÓÐ
|A1B2|==¡àa
2+b
2=7¡£¨1·Ö£©
ÓÖÓÉS
¡õA
1B
1A
2B
2=2S
¡õB
1F
1B
2F
2£®ÓÐ2a•b=2•2c•b£¬¡àa=2c¡£¨2·Ö£©
½âµÃa
2=4£¬b
2=3£¬¡£¨3·Ö£©£¬
¹ÊÍÖÔ²CµÄ·½³ÌΪ
+=1£®¡£¨4·Ö£©
£¨¢ò£©µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßmµÄ·½³ÌΪy=k£¨x-1£©+1£¬M£¨x
1£¬y
1£©£¬N£¨x
2£¬y
2£©£¬
Ôò
+=1£¬
+=1£¬
Á½Ê½Ïà¼õµÃ£º
k==-¡Á£®
¡ßQÊÇMNµÄÖе㣬
¡à¿ÉµÃÖ±ÏßmµÄбÂÊΪ
k==-£¬£¨7·Ö£©
µ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬½«x=1´úÈëÍÖÔ²·½³Ì²¢½âµÃ
M(1£¬)£¬
N(1£¬-)£¬
ÕâʱMNµÄÖеãΪ£¨1£¬0£©£¬
¡àx=1²»·ûºÏÌâÉèÒªÇ󣮡£¨8·Ö£©
×ÛÉÏ£¬Ö±ÏßmµÄ·½³ÌΪ3x+4y-7=0¡£¨9·Ö£©
£¨¢ó£©ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x
1£¬y
1£©£¬£¨x
2£¬y
2£©£¬¼ÙÉèÂú×ãÌâÉèµÄÖ±Ïßl´æÔÚ£¬
£¨i£©µ±l²»´¹Ö±ÓÚxÖáʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬ÓÉlÓën´¹Ö±ÏཻÓÚPµãÇÒ
||=1µÃ
=1£¬¼´m
2=k
2+1£¬¡£¨10·Ö£©
ÓÖ¡ßÒÔABΪֱ¾¶µÄÔ²¹ýԵ㣬¡àOA¡ÍOB£¬¡àx
1x
2+y
1y
2=0£®
½«y=kx+m´úÈëÍÖÔ²·½³Ì£¬µÃ£¨3+4k
2£©x
2+8kmx+£¨4m
2-12£©=0£¬
ÓÉÇó¸ù¹«Ê½¿ÉµÃ
x1+x2=£¬¢Ü
x1x2=£®¢Ý
0=x
1x
2+y
1y
2=x
1x
2+£¨kx
1+m£©£¨kx
2+m£©=
x1x2+k2x1x2+km(x1+x2)+m2=
(1+k2)x1x2+km(x1+x2)+m2£¬
½«¢Ü£¬¢Ý´úÈëÉÏʽ²¢»¯¼òµÃ£¨1+k
2£©£¨4m
2-12£©-8k
2m
2+m
2£¨3+4k
2£©=0£¬¢Þ
½«m
2=1+k
2´úÈë¢Þ²¢»¯¼òµÃ-5£¨k
2+1£©=0£¬Ã¬¶Ü£®
¼´´ËʱֱÏßl²»´æÔÚ£®¡£¨12·Ö£©
£¨ii£©µ±l´¹Ö±ÓÚxÖáʱ£¬Âú×ã
||=1µÄÖ±ÏßlµÄ·½³ÌΪx=1»òx=-1£¬
ÓÉA¡¢BÁ½µãµÄ×ø±êΪ£¨1£¬
£©£¬£¨1£¬-
£©»ò£¨-1£¬
£©£¬£¨-1£¬-
£©£®
µ±x=1ʱ£¬
•=£¨1£¬
£©•£¨1£¬-
£©=-
¡Ù0£¬
µ±x=-1ʱ£¬
•=£¨-1£¬
£©•£¨-1£¬-
£©=-
¡Ù0£®
¡à´ËʱֱÏßlÒ²²»´æÔÚ£®
×ÛÉÏËùÊö£¬Ê¹
•=0³ÉÁ¢µÄÖ±Ïßl²»³ÉÁ¢£¬¼´²»´æÔÚÖ±ÏßlʹÒÔABΪֱ¾¶µÄÔ²¹ýԵ㣮