Èçͼ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ¶¥µãΪA1£¬A2£¬B1£¬B2£¬½¹µãΪF1£¬F2£¬|A1B2|=
7
£¬S?A1B1A2B2=2S?B1F1B2F2
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßm¹ýQ£¨1£¬1£©£¬ÇÒÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±QÊÇMNµÄÖеãʱ£¬ÇóÖ±ÏßmµÄ·½³Ì£®
£¨¢ó£©ÉènΪ¹ýÔ­µãµÄÖ±Ïߣ¬lÊÇÓën´¹Ö±ÏཻÓÚPµãÇÒÓëÍÖÔ²ÏཻÓÚÁ½µãA£¬BµÄÖ±Ïߣ¬|
OP
|=1
£¬ÊÇ·ñ´æÔÚÉÏÊöÖ±ÏßlʹÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ñ£©ÒÀÌâÒâÓÐ|A1B2|=
a2+b2
=
7£¬
¡àa2+b2=7¡­£¨1·Ö£©
ÓÖÓÉS¡õA1B1A2B2=2S¡õB1F1B2F2£®ÓÐ2a•b=2•2c•b£¬¡àa=2c¡­£¨2·Ö£©
½âµÃa2=4£¬b2=3£¬¡­£¨3·Ö£©£¬
¹ÊÍÖÔ²CµÄ·½³ÌΪ
x2
4
+
y2
3
=1
£®¡­£¨4·Ö£©
£¨¢ò£©µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßmµÄ·½³ÌΪy=k£¨x-1£©+1£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò
x21
4
+
y21
3
=1
£¬
x22
4
+
y22
3
=1
£¬
Á½Ê½Ïà¼õµÃ£ºk=
y1-y2
x1-x2
=-
3
4
¡Á
x1+x2
y1+y2
£®
¡ßQÊÇMNµÄÖе㣬
¡à¿ÉµÃÖ±ÏßmµÄбÂÊΪk=
y1-y2
x1-x2
=-
3
4
£¬£¨7·Ö£©
µ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬½«x=1´úÈëÍÖÔ²·½³Ì²¢½âµÃM(1£¬
3
2
)
£¬N(1£¬-
3
2
)
£¬
ÕâʱMNµÄÖеãΪ£¨1£¬0£©£¬
¡àx=1²»·ûºÏÌâÉèÒªÇ󣮡­£¨8·Ö£©
×ÛÉÏ£¬Ö±ÏßmµÄ·½³ÌΪ3x+4y-7=0¡­£¨9·Ö£©
£¨¢ó£©ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¼ÙÉèÂú×ãÌâÉèµÄÖ±Ïßl´æÔÚ£¬
£¨i£©µ±l²»´¹Ö±ÓÚxÖáʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬ÓÉlÓën´¹Ö±ÏཻÓÚPµãÇÒ|
OP
|=1
µÃ
|m|
1+k2
=1
£¬¼´m2=k2+1£¬¡­£¨10·Ö£©
ÓÖ¡ßÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£¬¡àOA¡ÍOB£¬¡àx1x2+y1y2=0£®
½«y=kx+m´úÈëÍÖÔ²·½³Ì£¬µÃ£¨3+4k2£©x2+8kmx+£¨4m2-12£©=0£¬
ÓÉÇó¸ù¹«Ê½¿ÉµÃx1+x2=
-8km
3+4k2
£¬¢Üx1x2=
4m2-12
3+4k2
£®¢Ý
0=x1x2+y1y2=x1x2+£¨kx1+m£©£¨kx2+m£©=x1x2+k2x1x2+km(x1+x2)+m2=(1+k2)x1x2+km(x1+x2)+m2£¬
½«¢Ü£¬¢Ý´úÈëÉÏʽ²¢»¯¼òµÃ£¨1+k2£©£¨4m2-12£©-8k2m2+m2£¨3+4k2£©=0£¬¢Þ
½«m2=1+k2´úÈë¢Þ²¢»¯¼òµÃ-5£¨k2+1£©=0£¬Ã¬¶Ü£®
¼´´ËʱֱÏßl²»´æÔÚ£®¡­£¨12·Ö£©
£¨ii£©µ±l´¹Ö±ÓÚxÖáʱ£¬Âú×ã|
OP
|=1
µÄÖ±ÏßlµÄ·½³ÌΪx=1»òx=-1£¬
ÓÉA¡¢BÁ½µãµÄ×ø±êΪ£¨1£¬
3
2
£©£¬£¨1£¬-
3
2
£©»ò£¨-1£¬
3
2
£©£¬£¨-1£¬-
3
2
£©£®
µ±x=1ʱ£¬
OA
OB
=£¨1£¬
3
2
£©•£¨1£¬-
3
2
£©=-
5
4
¡Ù0£¬
µ±x=-1ʱ£¬
OA
OB
=£¨-1£¬
3
2
£©•£¨-1£¬-
3
2
£©=-
5
4
¡Ù0£®
¡à´ËʱֱÏßlÒ²²»´æÔÚ£®
×ÛÉÏËùÊö£¬Ê¹
OA
OB
=0³ÉÁ¢µÄÖ±Ïßl²»³ÉÁ¢£¬¼´²»´æÔÚÖ±ÏßlʹÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ1£¬µãM ÔÚÀâABÉÏ£¬ÇÒAM=
1
3
£¬µãPÊÇƽÃæABCDÉϵĶ¯µã£¬ÇÒ¶¯µãPµ½Ö±ÏßA1D1µÄ¾àÀëÓëµãPµ½µãM µÄ¾àÀëµÄƽ·½²îΪ2£¬Ôò¶¯µãPµÄ¹ì¼£ÊÇ£¨¡¡¡¡£©
A£®Ô²B£®Å×ÎïÏßC£®Ë«ÇúÏßD£®Ö±Ïß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©£¬×ó¡¢ÓÒÁ½¸ö½¹µã·Ö±ðΪF1¡¢F2£¬É϶¥µãM£¨0£¬b£©£¬¡÷MF1F2ΪÕýÈý½ÇÐÎÇÒÖܳ¤Îª6£¬Ö±Ïßl£ºx=my+4ÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Çó
OA
OB
µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×óÓÒÁ½½¹µã·Ö±ðΪF1£¬F2£¬pÊÇÍÖÔ²ÉÏÒ»µã£¬ÇÒÔÚxÖáÉÏ·½£¬PF2¡ÍF1F2£¬PF2=¦ËPF1£¬¦Ë¡Ê[
1
3
£¬
1
2
]£®
£¨1£©ÇóÍÖÔ²µÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£»
£¨2£©µ±eÈ¡×î´óֵʱ£¬¹ýF1£¬F2£¬PµÄÔ²QµÄ½ØyÖáµÄÏ߶γ¤Îª6£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ýÍÖÔ²ÓÒ×¼ÏßlÉÏÈÎÒ»µãAÒýÔ²QµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪM£¬N£®ÊÔ̽¾¿Ö±ÏßMNÊÇ·ñ¹ý¶¨µã£¿Èô¹ý¶¨µã£¬ÇëÇó³ö¸Ã¶¨µã£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÉèË«ÇúÏßCµÄ½¹µãÔÚyÖáÉÏ£¬ÀëÐÄÂÊΪ
2
£¬ÆäÒ»¸ö¶¥µãµÄ×ø±êÊÇ£¨0£¬1£©£®
£¨¢ñ£©ÇóË«ÇúÏßCµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓë¸ÃË«ÇúÏß½»ÓÚA¡¢BÁ½µã£¬ÇÒA¡¢BµÄÖеãΪ£¨2£¬3£©£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

¹ýµãM£¨1£¬1£©×÷Ò»Ö±ÏßÓëÍÖÔ²
x2
9
+
y2
4
=1ÏཻÓÚA£¬BÁ½µã£¬ÈôMµãÇ¡ºÃΪÏÒABµÄÖе㣬ÔòABËùÔÚÖ±Ïߵķ½³ÌΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªA£¨-3£¬0£©£¬B¡¢CÁ½µã·Ö±ðÔÚyÖáºÍxÖáÉÏÔ˶¯£¬²¢ÇÒÂú×ã
AB
BQ
=0
£¬
BC
=
1
2
CQ
£®
£¨1£©Ç󶯵ãQµÄ¹ì¼£·½³Ì£»
£¨2£©Éè¹ýµãAµÄÖ±ÏßÓëQµÄ¹ì¼£½»ÓÚE¡¢FÁ½µã£¬A¡ä£¨3£¬0£©£¬ÇóÖ±ÏßA¡äE¡¢A¡äFµÄбÂÊÖ®ºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬Ë«ÇúÏß
x2
a2
-
y2
b2
=1
µÄÁ½Ìõ½¥½üÏßΪ
l1£¬l2£¬¹ýÍÖÔ²CµÄÓÒ½¹µãF×÷Ö±Ïßl£¬Ê¹l¡Íl1£¬ÓÖlÓël2½»ÓÚP£¬ÉèlÓëÍÖÔ²CµÄÁ½¸ö½»µãÓÉÉÏÖÁÏÂÒÀ´ÎΪA¡¢B£¨Èçͼ£©£®
£¨1£©µ±l1Óël2µÄ¼Ð½ÇΪ60¡ã£¬ÇÒ¡÷POFµÄÃæ»ýΪ
3
2
ʱ£¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©µ±
FA
=¦Ë
AP
ʱ£¬Ç󵱦ËÈ¡µ½×î´óֵʱÍÖÔ²µÄÀëÐÄÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Ò»¶¯Ô²¹ý¶¨µãP£¨0£¬1£©£¬ÇÒÓ붨ֱÏßl£ºy=-1ÏàÇУ®
£¨1£©Çó¶¯Ô²Ô²ÐÄCµÄ¹ì¼£·½³Ì£»
£¨2£©Èô£¨1£©ÖеĹ켣ÉÏÁ½¶¯µã¼ÇΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÒx1x2=-16£®
¢ÙÇóÖ¤£ºÖ±ÏßAB¹ýÒ»¶¨µã£¬²¢Çó¸Ã¶¨µã×ø±ê£»
¢ÚÇó|PA|+|PB|µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸