精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)若是函数的两个不同的零点,求证:.

【答案】1)当时,函数上单调递增;当时,函数上单调递增,在上单调递减.2)证明见解析

【解析】

(1)求出,对参数讨论,即可到答案;

(2)根据零点方程变形消去参数,可得,然后整理可得,设,则,问题转化为要证,即证.即证当时,有,构造函数,只需证明即可.

(1)函数的定义域为

时,,所以函数上单调递增;

时,令,得;令,得

所以函数上单调递增,在上单调递减,

综上所述:当时,函数上单调递增;

时,函数上单调递增,在上单调递减.

(2)因为是方程的两个不同实根,不妨设.

于是,有,解得.

另一方面,由,得

从而可得

于是,.

,设,则.因此,.

要证,即证:.即证当时,有.

设函数,则

所以,上的增函数.注意到,,因此,.

于是,当时,有.所以,有成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数,有以下三个结论:

①函数恒有两个零点,且两个零点之积为

②函数的极值点不可能是

③函数必有最小值.

其中正确结论的个数有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图所示,记椭圆的左、右顶点分别为,当动点在定直线上运动时,直线分别交椭圆于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为(  )

A. 300,B. 300,C. 60,D. 60,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对称轴为坐标轴的椭圆的焦点为上.

(1)求椭圆的方程;

(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,则当的面积为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

支付金额

支付方式

不大于2000

大于2000

仅使用A

27

3

仅使用B

24

1

(Ⅰ)估计该校学生中上个月AB两种支付方式都使用的人数;

(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,为等边三角形,平面是线段上靠近的三等分点.

1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线与抛物线交于两点.

(Ⅰ)若,求以为直径的圆被轴所截得的弦长;

(Ⅱ)分别过点作抛物线的切线,两条切线交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是( )

A.若随机变量服从正态分布,则

B.已知直线平面,直线平面,则“”是“”的充分不必要条件

C.若随机变量服从二项分布: , 则

D.的充分不必要条件

查看答案和解析>>

同步练习册答案