精英家教网 > 高中数学 > 题目详情
已知函数f(n)=logn+1(n+2)(n∈N*),定义使f(1)•f(2)…f(k)为整数的数k(k∈N*)叫做企盼数,则在区间[1,50]内这样的企盼数共有    个.
【答案】分析:由已知中函数f(n)=logn+1(n+2)(n∈N*),由对数运算的性质易得f(1)•f(2)…f(k)=log2(k+2),若其值为整数,则k+2=2n(n∈Z),结合k∈[1,50],我们易得到满足条件的数的个数.
解答:解:∵函数f(n)=logn+1(n+2)(n∈N*),
∴f(1)=log23
f(2)=log34

f(k)=logk+1(k+2)
∴f(1)•f(2)…f(k)log23•log34•…•logk+1(k+2)=log2(k+2)
若f(1)•f(2)…f(k)为整数
则k+2=2n(n∈Z)
又∵k∈[1,50]
故k∈{2,6,14,30}
故答案为:4
点评:本题考查的知识点是对数的性质,其中换底公式的推论logab•logbc=logac是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
kx-(k+1)x

(1)若函数f(x)是(0,+∞)上的增函数,求k的取值范围;
(2)证明:当k=2时,不等式f(x)<lnx对任意x>0恒成立;
(3)证明:ln(1×2)+ln(2×3)+L+ln[n(n+1)]>2n-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个结论:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③已知空间直线m,n,l,则m∥n的一个必要非充分条件是m,n与l所成角相等;
④已知函数f(x)=log2x+logx2+1,
 &x∈(0,1)
,则f(x)的最大值为-1.
其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx3+nx2(m,n∈R,m≠0),函数y=f(x)的图象在点(2,f(2))处切线与x轴平行,
(1)用关于m的代数式表示n;
(2)求函数f(x)的单调递增区间;
(3)若x1>2,记函数y=f(x)的图象在点M(x1,f(x1))处的切线l与x轴的交点为(x2,0),证明:x2≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)已知函数f(x)=
1
2
x2-mln
1+2x
+mx-2m
,m<0.
(I)当m=-1时,求函数y=f(x)-
x
3
的单调区间;
(II)已知m≤-
e
2
(其中e是自然对数的底数),若存在实数x0∈(-
1
2
e-1
2
]
,使f(x0)>e+1成立,证明:2m+e+l<0;
(III)证明:
n
k=1
8k-3
3k2
>ln
(n+1)(n+2)
2
(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数 f (x) = x3 -(l-3)x2 -(l +3)x + l -1(l > 0)在区间[n, m]上为减函数,记m的最大值为m0n的最小值为n0,且满足m0-n0 = 4.

(1)求m0n0的值以及函数f (x)的解析式;

(2)已知等差数列{xn}的首项.又过点A(0, f (0)),B(1, f (1))的直线方程为y=g(x).试问:在数列{xn}中,哪些项满足f (xn)>g(xn)?

(3)若对任意x1x2∈ [a, m0](x1x2),都有成立,求a的最小值.

查看答案和解析>>

同步练习册答案