精英家教网 > 高中数学 > 题目详情

【题目】某连锁分店销售某种商品,该商品每件的进价为元,预计当每件商品售价为元时,一年的销售量(单位:万件)该分店全年需向总店缴纳宣传费、保管费共计万元.

1)求该连锁分店一年的利润与每件商品售价的函数关系式

2)求当每件商品售价为多少元时,该连锁店一年的利润最大,并求其最大值.

【答案】12)每件商品售价为元时,该连锁店一年利润最大,最大利润为万元.

【解析】

1)由利润与售价的关系,分段列出函数关系即可;

2)分段分别利用二次函数性质,均值不等式求解最大值,即得解.

1)①当时,

②当时,

所以

2)①当时,

其对称轴为,所当时,有最大值

②当时,,设

当且仅当,即取等号.因为

答:每件商品售价为元时,该连锁店一年利润最大,最大利润为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将4本不同的书随机放入如图所示的编号为1,2,3,4的四个抽屉中.

1

2

3

4

(Ⅰ)求4本书恰好放在四个不同抽屉中的概率;

(Ⅱ)随机变量表示放在2号抽屉中书的本数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生学习积极性和对待工作的态度进行了调查,统计数据如下所示:

积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?

2)试运用独立性检验的思想方法有多大把握认为学生的学习积极性与对班级工作的态度有关系?并说明理由.

本题参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】狄利克雷是19世纪德国著名的数学家,他定义了一个“奇怪的函数”,下列关于狄利克雷函数的叙述正确的有:______.

的定义域为,值域是 具有奇偶性,且是偶函数

是周期函数,但它没有最小正周期 ④对任意的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示.

1)求的值;

2)求上的最大值和最小值;

3)不画图,说明函数的图象可由的图象经过怎样变化得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的所有顶点都在球的球面上,平面,若球的表面积为,则三棱锥的侧面积的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为,第二次取出的小球标号为.

(1) 记事件表示“”, 求事件的概率

(2) 在区间内任取2个实数, 记的最大值为,求事件”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)讨论函数上的单调性;

2)若,当时,,且有唯一零点,证明: .

查看答案和解析>>

同步练习册答案