【题目】(本小题满分12分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x+m21﹣x .
(1)若函数f(x)为奇函数,求实数m的值;
(2)若函数f(x)在区间(1,+∞)上是单调递增函数,求实数m的取值范围;
(3)是否存在实数a,使得函数f(x)的图象关于点A(a,0)对称,若存在,求实数a的值,若不存在,请说明理由.
注:点M(x1 , y1),N(x2 , y2)的中点坐标为( , ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数g(x)=log2 (x>0),关于方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,则实数m的取值范围为( )
A.(﹣∞,4﹣2 )∪(4 ,+∞)
B.(4﹣2 ,4 )
C.(﹣ ,﹣ )
D.(﹣ ,﹣ ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请阅读下列材料:若两个正实数a1 , a2满足a12+a22=1,那么a1+a2≤ .
证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x , 恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤ .
根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的一次数学竞赛中,全体参赛学生的竞赛成绩X近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有16名.
(1)试问此次参赛的学生总数约为多少人?
(2)若该校计划奖励竞赛成绩在80分以上(含80分)的学生,试问此次竞赛获奖励的学生约为多少人?
附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数中,表示同一个函数的是( )
A.f(x)=2x+1与g(x)=
B.y=x﹣1与y=
C.y= 与y=x+3
D.f(x)=1与g(x)=1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx﹣x2+1.
(Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com