精英家教网 > 高中数学 > 题目详情
已知向量
a
=(1,2),
b
=(x,2),则向量
a
+2
b
与2
a
-
b
(  )
A、垂直的必要条件是x=-2
B、垂直的充要条件是x=
7
2
C、平行的充分条件是x=-2
D、平行的充要条件是x=1
分析:利用向量的坐标运算求出(
a
+2
b
),    ( 2
a
-
b
)
坐标;利用向量垂直的充要条件求出x;利用向量共线的充要条件列出方程求出x,得到选项.
解答:解:
a
+2
b
=(2x+1,6)
2
a
-
b
=(2-x,2)

(
a
+2
b
)⊥( 2
a
-
b
)
?(2x+1)(2-x)+8=0?x=
3+4
5
4
3-4
5
4

(
a
+2
b
)∥( 2
a
-
b
)
?(2x+1)×2=6×(2-x)?x=1
故选D
点评:本题考查向量的坐标运算、向量垂直的坐标形式的充要条件、向量共线的坐标形式的充要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知向量
a
=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤
π
2
)

(1)若
AB
a
,且|
AB
|=
5
|
OA
|(O
为坐标原点),求向量
OB

(2)若向量
AC
与向量
a
共线,当k>4,且tsinθ取最大值4时,求
OA
OC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(2,x)如果
a
b
所成的角为锐角,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(x,-2)且
a
b
,则实数x等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=tan(3x-
π
2
)
的最小正周期是
π
3

②角α终边上一点P(-3a,4a),且a≠0,那么cosα=-
3
5

③函数y=cos(2x-
π
3
)
的图象的一个对称中心是(-
π
12
,0)

④已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ为实数,且(
a
b
)∥
c
,则λ=2
⑤设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=-3
其中正确的个数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(x,4),若|
b
|=2|
a
|,则x的值为
±2
±2

查看答案和解析>>

同步练习册答案