【题目】已知函数在点处取得极小值-5,其导函数的图象经过点(0,0),(2,0).
(1)求的值;
(2)求及函数的表达式.
【答案】(1) ; (2),.
【解析】
(1)对函数求导得到导函数,代入已知点得到参数值;(2)根据到函数的正负可得到函数的极小值点为x=2,由f(2)=-5,得c=-1.
(1)由题设可得f′(x)=3x2+2ax+b.
∵f′(x)的图象过点(0,0),(2,0),∴
解得a=-3,b=0.
(2)由f′(x)=3x2-6x>0,得x>2或x<0,
∴在(-∞,0)上f′(x)>0,在(0,2)上f′(x)<0,在(2,+∞)上f′(x)>0.
∴f(x)在(-∞,0),(2,+∞)上递增,在(0,2)上递减,因此f(x)在x=2处取得极小值.
所以x0=2.由f(2)=-5,得c=-1,∴f(x)=x3-3x2-1.
科目:高中数学 来源: 题型:
【题目】某糕点房推出一类新品蛋糕,该蛋糕的成本价为4元,售价为8元.受保质期的影响,当天没有销售完的部分只能销毁.经过长期的调研,统计了一下该新品的日需求量.现将近期一个月(30天)的需求量展示如下:
日需求量x(个) | 20 | 30 | 40 | 50 |
天数 | 5 | 10 | 10 | 5 |
(1)从这30天中任取两天,求两天的日需求量均为40个的概率.
(2)以上表中的频率作为概率,列出日需求量的分布列,并求该月的日需求量的期望.
(3)根据(2)中的分布列求得当该糕点房一天制作35个该类蛋糕时,对应的利润的期望值为;现有员工建议扩大生产一天45个,求利用利润的期望值判断此建议该不该被采纳.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题 “存在”,命题:“曲线表示焦点在轴上的椭圆”,命题 “曲线表示双曲线”
(1)若“且”是真命题,求实数的取值范围;
(2)若是的必要不充分条件,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题.
①不存在点D,使四面体ABCD有三个面是直角三角形
②不存在点D,使四面体ABCD是正三棱锥
③存在点D,使CD与AB垂直并且相等
④存在无数个点D,使点O在四面体ABCD的外接球面上
其中真命题的序号是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(3)若为定义域上的“局部奇函数”,求实数的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线交x轴于点A,交y轴于点B,抛物线()经过点A,交x轴于另一点C,如图所示.
(1)求抛物线的解析式.
(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.
①当时,求t的值;
②过点E作,垂足为点M,过点P作交线段AB或AD于点N,当时,求t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com