【题目】已知集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0},则A∪B= , A∩(RB)= .
【答案】;
【解析】解:∵集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0}={x|0≤x≤4}, ∴RB={x|x<0或x>4},
∴A∪B={x|﹣1≤x≤4},A∩(RB)={x|﹣1≤x<0}.
所以答案是:{x|﹣1≤x≤4},{x|﹣1≤x<0}.
【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,角A、B、C的对边分别为a、b、c,且满足cos2A﹣cos2B=2cos( ﹣A)cos( +A).
(1)求角B的值;
(2)若b= 且b≤a,求2a﹣c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x3﹣ax2+3x+b(a,b∈R).
(Ⅰ)当a=2,b=0时,求f(x)在[0,3]上的值域.
(Ⅱ)对任意的b,函数g(x)=|f(x)|﹣ 的零点不超过4个,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心在轴非负半轴上,半径为2的圆C与直线相切.
(1)求圆C的方程;
(2)设不过原点O的直线l与圆O:x2+y2=4相交于不同的两点A,B.①求△OAB的面积的最大值;②在圆C上,是否存在点M(m,n),使得直线l的方程为mx+ny=1,且此时△OAB的面积恰好取到①中的最大值?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1= ,an=an﹣12+an﹣1(n≥2且n∈N).
(Ⅰ)求a2 , a3;并证明:2 ﹣ ≤an≤ 3 ;
(Ⅱ)设数列{an2}的前n项和为An , 数列{ }的前n项和为Bn , 证明: = an+1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(ax+1)ex﹣(a+1)x﹣1.
(1)求y=f(x)在(0,f(0))处的切线方程;
(2)若x>0时,不等式f(x)>0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E为PC上一点,且PE= PC.
(Ⅰ)求PE的长;
(Ⅱ)求证:AE⊥平面PBC;
(Ⅲ)求二面角B﹣AE﹣D的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com