精英家教网 > 高中数学 > 题目详情
8.已知椭圆C1:$\left\{\begin{array}{l}{x=m+2cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ为参数)及抛物线C2:y2=6(x-$\frac{3}{2}$),当C1∩C2≠∅时,则m的取值范围为[-$\frac{1}{2}$,$\frac{7}{2}$].

分析 首先,将椭圆的参数方程化为普通方程,然后,联立方程组,根据一元二次方程的根的情况进行求解,注意讨论思想的应用.

解答 解:由椭圆C1:$\left\{\begin{array}{l}{x=m+2cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ为参数),得
$\frac{(x-m)^{2}}{4}+\frac{{y}^{2}}{3}=1$,
联立方程组,得
x2+(8-2m)x+m2-16=0,且x-$\frac{3}{2}$≥0,
若C1∩C2≠ф,即C1与C2有交点,
∴x2+(8-2m)x+m2-16=0,且x-$\frac{3}{2}$≥0,有解,
(1)如方程有解,则:△=(8-2m)2-4(m2-16)≥0,
∴m≤4.
(2)x-$\frac{3}{2}$≥0时,(x-m)2≤4,所以:-2≤x-m≤2,即:m≥x-2或m≤x+2,
所以:m≥-$\frac{1}{2}$或m≤$\frac{7}{2}$.综合(1)(2)得:-$\frac{1}{2}$≤m≤$\frac{7}{2}$.
故答案为:[-$\frac{1}{2}$,$\frac{7}{2}$].

点评 本题重点考查了椭圆的参数方程、曲线之间的关系、一元二次方程等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.分层抽样适合的总体是(  )
A.总体容量较多B.样本容量较多
C.总体中个体有差异D.任何总体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500的部分为全月应纳税所得额.此项税款按下表分段累计计算:
全月应纳税所得额税率(%)
不超过1500元的部分3
超过1500元至4500元的部分10
超过4500元至9000元的部分20
凯里市某市民10月份应交纳税额为256元,那么他当月的工资、薪金所得是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在下列给出的命题中,所有正确命题的序号为①③⑤.
①若A,B为互斥事件,则P(A)+P(B)≤1;②若b2=ac,则a,b,c成等比数列;
③经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
④若函数f(x)对一切x∈R满足:|f(x)=|f(-x)||,则函数f(x)为奇函数或偶函数;
⑤若函数f(x)=|log2x|-($\frac{1}{2}$)x有两个不同的零点x1,x2,则x1•x2<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}\right.$对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,那么a的取值范围是(  )
A.(1,+∞)B.[4,8)C.(4,8)D.(1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足${\overrightarrow{a}}^{2}$=1,${\overrightarrow{b}}^{2}$=2,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.45°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在二项式($\root{3}{{x}^{2}}$-$\frac{1}{2}$)n的展开式中,只有第5项的二项式系数最大,则n=8;展开式中的第4项为-7${x}^{\frac{10}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设Sn=1-3+5-7+…+(-1)n-1(2n-1)(n∈N*),则Sn等于(  )
A.nB.-nC.(-1)nnD.(-1)n-1n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2f′(1)lnx-x,则f(x)的解析式为f(x)=2lnx-x.

查看答案和解析>>

同步练习册答案