【题目】对在直角坐标系的第一象限内的任意两点,作如下定义:,那么称点是点的“上位点”,同时点是点的“下位点”.
(1)试写出点的一个“上位点”坐标和一个“下位点”坐标;
(2)设、、、均为正数,且点是点的上位点,请判断点是否既是点的“下位点”又是点的“上位点”,如果是请证明,如果不是请说明理由;
(3)设正整数满足以下条件:对任意实数,总存在,使得点既是点的“下位点”,又是点的“上位点”,求正整数的最小值.
【答案】(1)“上位点”,“下位点”;(2)是,证明见解析;(3).
【解析】
(1)由已知中“上位点”和“下位点”的定义,可得出点的一个“上位点”的坐标为,一个“下位点”的坐标为;
(2)由点是点的“上位点”得出,然后利用作差法得出与、的大小关系,结合“下位点”和“上位点”的定义可得出结论;
(3)结合(2)中的结论,可得,,满足条件,再说明当时,不成立,可得出的最小值为.
(1)对于平面直角坐标系的第一象限内的任意两点作如下定义:,那么称点是点的“上位点”,同时点是点的“下位点”.
点的一个“上位点”的坐标为,一个“下位点”的坐标为;
(2)点是点的“上位点”,,.
,
点是点的“下位点”,
,
点是点的“上位点”;
(3)若正整数满足条件:在时恒成立.
由(2)中的结论可知,,时满足条件.
若,由于,
则不成立.
因此,的最小值为.
科目:高中数学 来源: 题型:
【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”.该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的列联表:
赞同限行 | 不赞同限行 | 合计 | |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“是否赞同限行与是否拥有私家车”有关;
(2)为了了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少抽到1名“没有私家车”人员的概率.
附:.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 过点,且离心率为.过点的直线与椭圆交于, 两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若点为椭圆的右顶点,探究: 是否为定值,若是,求出该定值,若不是,请说明理由.(其中, , 分别是直线、的斜率)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,其图象在点处切线的斜率为-3.
(1)求与关系式;
(2)求函数的单调区间(用只含有的式子表示);
(3)当时,令,设是函数的两个零点, 是与的等差中项,求证: (为函数的导函数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经济开发区规划要修建一地下停车场,停车场横截面是如图所示半椭圆形AMB,其中AP为2百米,BP为4百米,,M为半椭圆上异于A,B的一动点,且面积最大值为平方百米,如图建系.
求出半椭圆弧的方程;
若要将修建地下停车场挖出的土运到指定位置P处,N为运土点,以A,B为出口,要使运土最省工,工程部需要指定一条分界线,请求出分界线所在的曲线方程;
若在半椭圆形停车场的上方修建矩形商场,矩形的一边CD与AB平行,设百米,试确定t的值,使商场地面的面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
(Ⅰ)将y表示为x的函数;
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com