精英家教网 > 高中数学 > 题目详情
20.已知函数y=f(x+2)的图象关于直线x=-2对称,且当x∈(-∞,0)时,f(x)+xf′(x)>0成立.若a=(20.2)•f(20.2),b=(ln2)•f(ln2),c=(log24)•f(log24),则a,b,c的大小关系是(  )
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

分析 利用函数y=f(x+2)的图象关于直线x=-2对称,可得函数y=f(x)的图象关于y轴对称,是偶函数.令g(x)=xf(x),利用已知当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)>0,可得函数g(x)在x∈(-∞,0)单调递增,进而得到函数g(x)在(0,+∞)上单调递增.再根据log24=2>20.2>1>ln2>0.即可得到a,b,c的大小.

解答 解:∵函数y=f(x+2)的图象关于直线x=-2对称,
∴函数y=f(x)的图象关于y轴对称,是偶函数.
令g(x)=xf(x),则g(x)为奇函数,
则当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)>0,
∴函数g(x)在x∈(-∞,0)单调递增,
因此函数g(x)在(0,+∞)上单调递增.
∵log24=2>20.2>1>ln2>0.
∴c>a>b.
故选D.

点评 熟练掌握轴对称、奇偶函数的性质、利用导数研究函数的单调性、对数的运算性质等是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知tanα=2.
(1)求$\frac{sinα+cosα}{sinα-cosα}$的值;
(2)若tan(α-β)=2,求tan(β-2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若等比数列{an}满足log3a1+log3a2+…+log3a10=10,则a2a9+a4a7的值为(  )
A.9B.18C.27D.2+log35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\left\{\begin{array}{l}{\sqrt{2-{x}^{2}},-\sqrt{2}≤x≤1}\\{\frac{1}{x},1<x≤e}\end{array}\right.$,则${∫}_{-\sqrt{2}}^{e}$f(x)dx等于(  )
A.$\frac{3π+6}{4}$B.$\frac{3π+4}{4}$C.π+1D.$\frac{3π+3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若c=2,∠C=$\frac{π}{3}$且△ABC是锐角三角形,则△ABC周长的取值范围(2$\sqrt{3}$+2,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.圆的半径为6cm,则圆心角为15°的圆弧与半径围成的扇形的面积为$\frac{3π}{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项等比数列{an}的首项是2,第2项与第3项的和是12.
(1)求数列{an}的通项公式;
(2)设bn=an•log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在山底A处测得山顶B的仰角∠CAB=45°,沿倾斜角为30°的斜坡AS走2000米至S点,又测得山顶∠DSB=75°,则山高BC为2000米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,在某次考试成绩统计中,某老师为了对学生数学偏差x(单位:分)与物理偏差y(单位:分)之间的关系进行分析,随机挑选了8位同学,得到他们的两科成绩偏差数据如下:
学生序号12345678
数学偏差x20151332-5-10-18
物理偏差y6.53.53.51.50.5-0.5-2.5-3.5
(Ⅰ)若x与y之间具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)若该次考试该班数学平均分为120分,物理平均分为91.5分,试由(1)的结论预测数学成绩为128分的同学的物理成绩.
参考数据:
$\sum_{i=1}^{8}$xiyi=20×6.5+15×3.5+13×3.5+3×1.5+2×0.5+(-5)×(-0.5)+(-10)×(-2.5)+(-18)×(-3.5)=324
$\sum_{i=1}^{8}$x${\;}_{i}^{2}$=202+152+132+32+22+(-5)2+(-10)2+(-18)2=1256.

查看答案和解析>>

同步练习册答案