精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱ABCA1B1C1中,A1A=AC,D、E、F分别为线段AC、A1A、C1B的中点.

(1)证明:EF∥平面ABC;
(2)证明:C1E⊥平面BDE.
(1)见解析(2)见解析
证明:(1)取BC的中点G,连结AG、FG.
因为F为C1B的中点,所以FG∥=C1C.
在三棱柱ABC-A1B1C1中,A1A∥=C1C,且E为A1A的中点,所以FG∥=EA.
所以四边形AEFG是平行四边形.所以EF∥AG.
因为EF平面ABC,AG平面ABC,所以EF∥平面ABC.
(2)因为在正三棱柱ABC-A1B1C1中,A1A⊥平面ABC,BD平面ABC,所以A1A⊥BD.
因为D为AC的中点,BA=BC,所以BD⊥AC.
因为A1A∩AC=A,A1A平面A1ACC1,AC平面A1ACC1,所以BD⊥平面A1ACC1.
因为C1E平面A1ACC1,所以BD⊥C1E.
根据题意,可得EB=C1E=AB,C1B=AB,
所以EB2+C1E2=C1B2.从而∠C1EB=90°,即C1E⊥EB.
因为BD∩EB=B,BD平面BDE,EB平面BDE,所以C1E⊥平面BDE.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在空间四边形ABCD中,已知AC⊥BD,AD⊥BC,求证:AB⊥CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

由平面α外一点P引平面的三条相等的斜线段,斜足分别为A、B、C,O为△ABC的外心,求证:OP⊥α.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,点A,B,E,A1在一个平面内,AB=BC=CC1=2,AC=2.

证明:(1)A1E∥AB.
(2)平面CC1FB⊥平面AA1EB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则下列四个命题中错误的为:(      )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.

(1)求棱AA1与BC所成的角的大小;
(2)在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A、B、C是不共线的三点,直线m垂直于直线AB和AC,直线n垂直于直线BC和AC,则直线m,n的位置关系是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知在正方体ABCDA1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知四棱锥PABCD的顶点P在底面的射影恰好是底面菱形ABCD的两条对角线的交点,若AB=3,PB=4,则PA长度的取值范围为________.

查看答案和解析>>

同步练习册答案