精英家教网 > 高中数学 > 题目详情
(2012•松江区三模)如图,目标函数z=ax-y的可行域为四边形OACB(含边界).若点C(3,2)是该目标函数取最小值时的最优解,则a的取值范围是
-2≤a≤-
2
3
-2≤a≤-
2
3
分析:根据约束条件对应的可行域,利用几何意义求最值,z=ax-y表示直线在y轴上的截距的相反数,结合图象可求a的 范围
解答:解:由可行域可知,直线AC的斜率KAC=
2-0
3-4
=-2
直线BC的斜率KBC=
2-4
3-0
=-
2
3

当直线z=ax-y的斜率介于AC与BC之间时,C是该目标函数z=ax-y的最优解,
所以a∈[-2,-
2
3
]
故答案为:-2≤a≤-
2
3
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值的方法反求参数的范围,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•松江区三模)掷两颗骰子得两数,则事件“两数之和大于4”的概率为
5
6
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•松江区三模)如图放置的边长为1的正方形ABCD的顶点A、D分别在x轴、y轴正半轴上(含原点)上滑动,则
OB
OC
的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•松江区三模)若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范围是
m>2
m>2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•松江区三模)若函数f(x)=2x+1,则f-1(3)=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•松江区三模)集合A={x|-3≤x≤2},B={x||x-a|≤1},且A?B,则实数a的取值范围是
-2≤a≤1
-2≤a≤1

查看答案和解析>>

同步练习册答案