精英家教网 > 高中数学 > 题目详情
棱长为1的正方体的8个顶点都在球的表面上,分别是棱的中点,点分别是线段(不包括端点)上的动点,且线段平行于平面,则
(1)直线被球截得的线段长为
(2)四面体的体积的最大值是
(1);(2).

试题分析:(1)因为点在圆上,为中点,所以直线被球截得的线段长为正方形的外接圆直径,等于,(2)过点,连接
平面∥平面为平面与两平行平面的交线,
,又平面
设正方体的棱长为1,,则

时,最大值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图:已知长方体的底面是边长为的正方形,高的中点,交于点.
(1)求证:平面
(2)求证:∥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求证:平面
(3)设,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图甲,是边长为6的等边三角形,分别为靠近的三等分点,点为边边的中点,线段交线段于点.将沿翻折,使平面平面,连接,形成如图乙所示的几何体.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC,设AD中点为P.

(1)当E为BC中点时,求证:CP∥平面ABEF;
(2)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三棱柱ABC-A1B1C1底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球表面积为12,则该三棱柱的体积为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆锥的表面积是底面积的倍,那么该圆锥的侧面展开图扇形的圆心角为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用长、宽分别是3π与π的矩形硬纸卷成圆柱的侧面,则圆柱的底面面积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.记CD=x,V(x)表示四棱锥F-ABCD的体积.

(1)求V(x)的表达式.
(2)求V(x)的最大值.

查看答案和解析>>

同步练习册答案