精英家教网 > 高中数学 > 题目详情

【题目】如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路不考虑宽.

I求道路BE的长度;

求道路AB,AE长度之和的最大值.

【答案】; .

【解析】

试题分析:连结,内,可根据余弦定理求,从而可以判断的形状,在内根据勾股定理求;,,,在内,根据正弦定理,表示,,利用三角函数的有界性,得到长度和的最大值.

试题解析:如图,连接,在中,由余弦定理得:

,

,

,,

,,

所以在中,;

,,,

中,由正弦定理,得

,

,

,即时,取得最大值

即道路长度之和的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在长为2的正方形,点分别中点,将分别沿起,使两点重合于.

求证

求四棱体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程,以为极点, 轴的非负半轴为极轴建立极坐标系.

(Ⅰ)求圆的极坐标方程;

(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)恒成立,求实数的取值范围;

(Ⅲ)求整数的值,使函数在区间上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1为常数,且在区间变化时,求的最小值

2证明:对任意的,总存在,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生身高情况,某校以的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为,测得男生身高情况的频率分布直方图(如图所示):

(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);

(2)从样本中身高在之间的男生中任选2人,求至少有1人身高在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱,侧面.

)求证

二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一顿二氧化碳得到可利用的化工产品价值为100元.

1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两枚均匀的硬币和一枚不均匀的硬币,其中不均匀的硬币抛掷后出现正面的概率为,小华先抛掷这三枚硬币,然后小红再抛掷这三枚硬币.

(1)求小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率;

(2)若用表示小华抛得正面的个数,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案