精英家教网 > 高中数学 > 题目详情
设函数f(x)=|cosx|+|sinx|,下列四个结论正确的是(  )
①f(x)是奇函数;                        
②f(x)关于直线x=
4
对称;
③当x∈[0,2π]时,f(x)∈[1,
2
];         
④当x∈[0,
π
2
]时,f(x)单调递增.
A、①③B、②④C、③④D、②③
分析:分别根据函数的奇偶性,对称性和单调性的性质即可得到结论.
解答:解:①f(-x)=|cos(-x)|+|sin(-x)|=|cosx|+|sinx|=f(x),
∴f(x)是偶函数;∴①错误.
②∵f(x+
4
)=|sin(x+
4
)|+|cos(x+
4
)|=|
2
2
(cosx-sinx)|+|
2
2
(cosx+sinx)|,
f(
4
-x)=|sin(
4
-x)|+|cos(
4
-x)|=|
2
2
(cosx-sinx)|+|
2
2
(cosx+sinx)|,
∴f(x+
4
)=f(
4
-x),∴函数f(x)关于直线x=
4
对称;∴②正确.
③f(x)=
sin?x+cos?x,0≤x≤
π
2
sin?x-cos?x,
π
2
<x≤π
-sin?x-cos?x,π<x≤
2
cos?x-sin?x,
2
<x≤2π
精英家教网
作出函数f(x)的图象可知:当x∈[0,2π]时,f(x)∈[1,
2
]; 
∴③正确.
④当x∈[0,
π
2
]时,由图象可知f(x)不单调.
∴④错误.
故选:D.
点评:本题主要考查三角函数的图象和性质,利用条件求出函数的表达式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=cos(x+
2
3
π)+2cos2
x
2
,x∈R.
(1)求f(x)的值域;
(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

27、对于函数f(x),若f(x0)=x0,则称x0为f(x)的“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)设函数f(x)=3x+4求集合A和B;
(2)求证:A⊆B;
(3)设函数f(x)=ax2+bx+c(a≠0),且A=∅,求证:B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cos
x
2
,1),
n
=(sin
x
2
,1)(x∈R),设函数f(x)=
m
n
-1.
(1)求函数f(x)的值域与递增区间;
(2)已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,若f(B)=
3
5
,a=3,c=5,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,
3
sin2x),x∈R.
(1)若f(x)=0且x∈(-
π
2
,0),求tan2x;
(2)设△ABC的三边a,b,c依次成等比数列,试求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泸州一模)平面直角坐标系中,已知A(1,2),B(2,3).
(I)求|
AB
|的值;
(Ⅱ)设函数f(x)=x2+1的图象上的点C(m,f(m))使∠CAB为钝角,求实数m取值的集合.

查看答案和解析>>

同步练习册答案