精英家教网 > 高中数学 > 题目详情
12.已知x>0,y>0,且2x+y=1,则$\frac{1}{x}$+$\frac{1}{y}$的最小值是3+2$\sqrt{2}$.

分析 利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵x>0,y>0,且2x+y=1,
则$\frac{1}{x}$+$\frac{1}{y}$=(2x+y)$(\frac{1}{x}+\frac{1}{y})$=3+$\frac{y}{x}+\frac{2x}{y}$≥3+2$\sqrt{\frac{y}{x}•\frac{2x}{y}}$=3+2$\sqrt{2}$,当且仅当y=$\sqrt{2}x$=$\sqrt{2}$-1时取等号.
其最小值为3+2$\sqrt{2}$.
故答案为:3+2$\sqrt{2}$.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在△ABC中,点M是BC的中点,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AM}$=(  )
A.$\overrightarrow{a}$+$\overrightarrow{b}$B.$\overrightarrow{a}$-$\overrightarrow{b}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$D.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名来自A学校且1名为女棋手,另外4名来自B学校且2名为女棋手.从这7名队员中随机选派4名队员参加第一阶段的比赛.
(1)求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;
(2)设X为选出的4名队员中A、B两校人数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,△ABC为边长为1的正三角形,D为AB的中点,E在BC上,且BE:EC=1:2,连结DE并延长至F,使EF=DE,连结FC,则$\overrightarrow{FC}$•$\overrightarrow{AC}$的值为$\frac{7}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x∈R,$sinx>\frac{{\sqrt{3}}}{2}$,则(  )
A.﹁p:?x∈R,sin $x≤\frac{{\sqrt{3}}}{2}$B.﹁p:?x∈R,$sinx<\frac{{\sqrt{3}}}{2}$
C.﹁p:?x∈RD.﹁p:?x∈R,$sinx≤\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-2x.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)当x>0时,方程f(x)=kx2-2x无解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,则输出的 a=(  )
A.1B.-1C.-4D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.命题“?x∈[-$\frac{π}{4}$,$\frac{π}{3}$],tanx≤m”的否定为?x∈[-$\frac{π}{4}$,$\frac{π}{3}$],tanx>m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点P为线段y=2x,x∈[2,4]上任意一点,点Q为圆C:(x-3)2+(y+2)2=1上一动点,则线段|PQ|的最小值为$\sqrt{37}$-1.

查看答案和解析>>

同步练习册答案