精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,四点中恰有三点在椭圆上.

1)求椭圆的方程;

2)已知点是椭圆的右顶点,作一条平行于的直线交椭圆于两点,记直线和直线的斜率分别为,试判断是否为定值?若是,求出该定值;若不是,请说明理由.

【答案】1;(2)是定值,定值为.

【解析】

1)由椭圆的对称性知,点在椭圆上,再说明点不在椭圆上,将点的坐标代入椭圆方程,可得出的值,可求得椭圆的方程;

2)计算出直线的斜率为,可设直线的方程为,设点,将直线的方程与椭圆的方程联立,列出韦达定理,结合斜率公式可求得为定值,进而可得出结论.

1)由于两点关于轴对称,故由题设知椭圆经过两点.

又由知,椭圆不经过点,所以点在椭圆上.

因此,解得,故椭圆的方程为

2,故设直线的方程为

设点,由可得

,得

由韦达定理得

所以(定值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图如图所示,根据统计图,给出下列结论:

①2018年9~12月,该市邮政快递业务量完成件数约1500万件;

②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;

③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为( )

A. 3

B. 2

C. 1

D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角ABC的对边分别为abc,且,则的面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

为真命题,则为真命题;

命题“,有”的否定为“,有”;

“平面向量的夹角为钝角”的充分不必要条件是“”;

在锐角三角形中,必有

为等差数列,若,则

其中正确命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:

组别

年龄

组统计结果

组统计结果

经常使用单车

偶尔使用单车

经常使用单车

偶尔使用单车

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.

①求这60人中“年龄达到35岁且偶尔使用单车”的人数;

②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会.会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自组,求组这4人中得到礼品的人数的分布列和数学期望;

(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄应取25还是35?请通过比较的观测值的大小加以说明.

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论的极值点的个数;

,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。现对测试数据进行分析,得到如图所示的频率分布直方图:

1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).

2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50。用样本平均数作为的近似值,用样本标准差作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.

参考数据:若随机变量服从正态分布,则.

3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从)若掷出反面遥控车向前移动两格(从),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为P试证明是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线(为参数,实数),曲线(为参数,实数).在以为极点,轴的正半轴为极轴的极坐标系中,射线)与交于两点,与交于两点,当时,;当时,.

(1)求的值;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450,深2.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400

1)求发酵池边长的范围;

2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).:发酵池的边长如何设计,可使得发酵馆占地面积最小.

查看答案和解析>>

同步练习册答案