精英家教网 > 高中数学 > 题目详情

【题目】下列各个说法正确的是( )

A. 终边相同的角都相等 B. 钝角是第二象限的角

C. 第一象限的角是锐角 D. 第四象限的角是负角

【答案】B

【解析】分析:终边相同的角是否相等可根据与角终边相同的角的集合为来判断;对于选项B,可根据第二象限角的集合为和钝角范围判断即可;

对于选项CD举一个反例验证其错误即可。

详解:对于选项A,与角终边相同的角的集合为,故终边相同的角相差的整数倍数,所以终边相同的角都相等不对故选项A不对

对于选项B第二象限角的集合为 ,当时,集合为 ,即为钝角的范围。所以选项B正确。

对于选项C是第一象限角,但其不是锐角,故选项C错误;

对于选项D是第四象限角,但不是负角,故选项D错误。

故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆 的方程为 ,直线 的方程为 ,点 在直线 上,过点 作圆 的切线 ,切点为 .
(1)若点 的坐标为 ,求切线 的方程;
(2)求四边形 面积的最小值;
(3)求证:经过 三点的圆必过定点,并求出所有定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆 过定点 ,且在定圆 的内部与其相内切.
(1)求动圆圆心 的轨迹方程
(2)直线 交于 两点,与圆 交于 两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,点在直线上.数列满足

,且其前9项和为153.

)求数列的通项公式;

)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 “存在 ”,命题 :“曲线 表示焦点在 轴上的椭圆”,命题 “曲线 表示双曲线”
(1)若“ ”是真命题,求实数 的取值范围;
(2)若 的必要不充分条件,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列直线方程

(1)求过点且与圆相切的直线方程;

(2)一直线经过点,被圆截得的弦长为8,求此弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为 ,其准线与 轴交于点 ,过 作斜率为 的直线 与抛物线交于 两点,弦 的中点为 的垂直平分线与 轴交于
(1)求 的取值范围;
(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为25x万元(国家规定大货车的报废年限为10年).

1)大货车运输到第几年年底,该车运输累计收入超过总支出?

2)在第几年年底将大货车出售,能使小王获得的年平均利润最大(利润=累计收入+销售收入-总支出)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在各项均为正数的等比数列 中, ,且 成等差数列.
(1)求等比数列 的通项公式;
(2)若数列 满足 ,求数列 的前 项和 的最大值.

查看答案和解析>>

同步练习册答案