精英家教网 > 高中数学 > 题目详情
已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n? (n∈N*)

(Ⅰ)求a1,a2
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn
分析:(Ⅰ)先根据a1=S1求得a1,再根据a1+a2=S2求得a2
(Ⅱ)根据an=Sn-Sn-1,代入Sn=
3
2
n2+
7
2
n
即可求得an.进而根据求得an-an-1为常数说明数列{an}是以5为首项,3为公差的等差数列.
(Ⅲ)把an代入
bn+1
bn
求得结果为常数,可推知数列{bn}等比数列.根据b1=2a1求得首项,根据
bn+1
bn
=8求得公比,进而根据等比数列的求和公式求得Tn
解答:解:(Ⅰ)a1=S1=5,a1+a2=S2=
3
2
×22+
7
2
×2=13

解得a2=8.
(Ⅱ)当n≥2时,an=Sn-Sn-1=
3
2
[n2-(n-1)2]+
7
2
[n-(n-1)]
=
3
2
(2n-1)+
7
2
=3n+2

又a1=5满足an=3n+2,
∴an=3n+2?(n∈N*).
∵an-an-1=3n+2-[3(n-1)+2]=3(n≥2,n∈N*),
∴数列{an}是以5为首项,3为公差的等差数列.
(Ⅲ)由已知得bn=2an(n∈N*),
bn+1
bn
=
2an+1
2an
=2an+1-an=23=8
(n∈N*),
b1=2a1=32
∴数列{bn}是以32为首项,8为公比的等比数列.
Tn=
32(1-8n)
1-8
=
32
7
(8n-1)
点评:本题主要考查了等比和等差数列的确定.关键是找到相邻两项的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知数列{an},其前n项和Sn=n2+n+1,则a8+a9+a10+a11+a12=
100

查看答案和解析>>

科目:高中数学 来源: 题型:

19、已知数列{an},其前n项和Sn满足Sn+1=2λSn+1(λ是大于0的常数),且a1=1,a3=4.
(1)求λ的值;
(2)求数列{an}的通项公式an
(3)设数列{nan}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n (n∈N*)

(Ⅰ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅱ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn,点(n,Sn)在以F(0,
14
)为焦点,以坐标原点为顶点的抛物线上,数列{bn}满足bn=2 an
(1)求数列{an},{bn}的通项公式;
(2)设cn=an×bn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案