精英家教网 > 高中数学 > 题目详情
8.己知函数h(x)=lnx-x-$\frac{m}{x}$有两个极值点x1,x2,且x1<x2
(1)写出函数h(x)的单调区间(用x1,x2表示,不需要说明理由)
(2)如果函数F(x)=h(x)+$\frac{1}{2}$x在(1,b)上为增函数.求b的取值范围
(3)当h(x1)+ln3+$\frac{1}{9}$<-$\frac{1}{2}$${{x}_{2}}^{2}$+x2时.求h(x2)-x1的取值范围.

分析 (1)根据函数h(x)=lnx-x-$\frac{m}{x}$有两个极值点x1,x2,且x1<x2,写出函数h(x)的单调区间;
(2)如果函数F(x)=h(x)+$\frac{1}{2}$x在(1,b)上为增函数.b<1+$\sqrt{1+2m}$,确定2m>-$\frac{1}{2}$,即可求b的取值范围;
(3)当h(x1)+ln3+$\frac{1}{9}$<-$\frac{1}{2}$${{x}_{2}}^{2}$+x2时.$\frac{1}{2}$${{x}_{2}}^{2}$+ln(1-x2)+x2+ln3-$\frac{8}{9}$<0,$\frac{1}{2}$<x2<1,设f(x2)=$\frac{1}{2}$${{x}_{2}}^{2}$+ln(1-x2)+x2+ln3-$\frac{8}{9}$,证明f(x2)在($\frac{1}{2}$,1)上单调递减,$\frac{2}{3}$<x2<1,利用h(x2)-x1=lnx2-x2,设φ(x2)=lnx2-x2,$\frac{2}{3}$<x2<1,证明φ(x2)在($\frac{2}{3}$,1)上单调递减,即可求h(x2)-x1的取值范围.

解答 解:(1)函数h(x)的单调增区间是(x1,x2),单调减区间是(0,x1),(x2,+∞);
(2)函数F(x)=h(x)+$\frac{1}{2}$x=lnx-$\frac{1}{2}$x-$\frac{m}{x}$,∴F′(x)=$\frac{-{x}^{2}+2x+2m}{2{x}^{2}}$
∵在(1,b)上为增函数,
∴b<1+$\sqrt{1+2m}$,
∵函数h(x)=lnx-x-$\frac{m}{x}$有两个极值点x1,x2,h′(x)=$\frac{-{x}^{2}+x+m}{{x}^{2}}$,
∴△=1+4m>0,∴2m>-$\frac{1}{2}$,
∴$\sqrt{1+2m}$>$\frac{\sqrt{2}}{2}$,
∴b≤1+$\frac{\sqrt{2}}{2}$,
∴1<b≤1+$\frac{\sqrt{2}}{2}$;
(3)h′(x)=$\frac{-{x}^{2}+x+m}{{x}^{2}}$=0的两个根分别为x1,x2
∴x1,x2是x2-x-m=0的两个正实数根,
∴x1+x2=1,x1x2=-m
当h(x1)+ln3+$\frac{1}{9}$<-$\frac{1}{2}$${{x}_{2}}^{2}$+x2时,lnx1-x1-$\frac{m}{{x}_{1}}$+ln3+$\frac{1}{9}$<-$\frac{1}{2}$${{x}_{2}}^{2}$+x2
∴$\frac{1}{2}$${{x}_{2}}^{2}$+ln(1-x2)+x2+ln3-$\frac{8}{9}$<0.
显然$\frac{1}{2}$<x2<1
设f(x2)=$\frac{1}{2}$${{x}_{2}}^{2}$+ln(1-x2)+x2+ln3-$\frac{8}{9}$,
∴f′(x2)=$\frac{-{{x}_{2}}^{2}}{1-{x}_{2}}$<0,
∴f(x2)在($\frac{1}{2}$,1)上单调递减,
∵f($\frac{2}{3}$)=0,
∴f(x2)<0=f($\frac{2}{3}$),
∴$\frac{2}{3}$<x2<1
∴h(x2)-x1=lnx2-x2
设φ(x2)=lnx2-x2,$\frac{2}{3}$<x2<1
∵φ′(x2)=$\frac{1}{{x}_{2}}$-1>0,
∴φ(x2)在($\frac{2}{3}$,1)上单调递减
∴φ(x2)∈(ln$\frac{2}{3}$-$\frac{2}{3}$,-1)
∴h(x2)-x1的取值范围是(ln$\frac{2}{3}$-$\frac{2}{3}$,-1).

点评 本题考查导数知识的综合运用,考查函数的单调性,极值,考查学生分析解决问题的能力,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数f(x)=lg(tanx+$\sqrt{1+ta{n}^{2}x}$)为(  )
A.奇函数B.既是奇函数又是偶函数
C.偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和Sn满足条件:Sn+an=$\frac{{n}^{2}+1}{{n}^{2}+n}$.
(1)求a1、a2、a3的值;
(2)猜测数列{an}的通项公式,并给出证明;
(3)求$\underset{lim}{n→∞}$n2an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义在R上的函数f(x)同时满足:(i) f(1)=2;(ii)?x,y∈R,f(x+y+1)=f(x-y+1)-f(x)f(y); (iii) f(x)在区间[0,1]上是单调增函数.
(Ⅰ)求f(0)和f(-1)的值;
(Ⅱ)求函数f(x)的零点;
(Ⅲ)解不等式f(x)>$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+bx+c(a、b、c∈R)满足:f(2)=2,f(-2)=0.
(1)求实数b的值;
(2)若对任意实数x,都有f(x)≥x成立,求函数f(x)的表达式;
(3)在(2)的条件下,设g(x)=f(x)-$\frac{m}{2}$x,x∈[0,+∞),若g(x)图象上的点都位于直线y=$\frac{1}{4}$的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α,β是三次函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}$+2bx的两个极值点,且 α∈(0,1),β∈(1,2),则$\frac{b-1}{a-1}$的范围(  )
A.$(0,\frac{1}{2})$B.(0,1)C.$(-\frac{1}{2},0)$D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在矩形ABCD中,已知$AB=\sqrt{3},AD=2$,点E是BC的中点,点F在CD上,若$\overrightarrow{AB}•\overrightarrow{AF}$=$\sqrt{3}$,则$\overrightarrow{AE}•\overrightarrow{BF}$的值是$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.关于函数f(x)=2x的图象变换正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|x≤2},a=$\sqrt{3}$,则下列结论中正确的是(  )
A.a⊆AB.{a}⊆AC.a∉AD.{a}∈A

查看答案和解析>>

同步练习册答案