精英家教网 > 高中数学 > 题目详情

已知函数处取得极值,

(1)求实数的值;

(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.

 

【答案】

(1)1;(2)

【解析】 (1)根据建立关于a的方程求出a值。

(2) 关于的方程在区间上恰有两个不同的实数根可转化为

有两个不同的实数根。

构造函数证明它在[0,2]上有两个零点即可。然后利用导数研究其图像数形结合解决此问题。

解:(1)

                             ………4分

(2)由          

         …………12分 

 

练习册系列答案
相关习题

科目:高中数学 来源:2013届度江西南昌二中高二下学期期末理科数学试卷(解析版) 题型:解答题

(本题12分)已知函数处取得极值.

(1) 求

(2 )设函数,如果在开区间上存在极小值,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省毕节市高三上学期第三次月考理科数学试卷 题型:解答题

已知函数=处取得极值.

(1)求实数的值;

(2) 若关于的方程上恰有两个不相等的实数根,求实数的取值范围;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省高三第一次月考理科数学试卷 题型:解答题

(本小题满分14分) 已知函数处取得极值。

(Ⅰ)求函数的解析式;

(Ⅱ)求证:对于区间上任意两个自变量的值,都有

(Ⅲ)若过点可作曲线的三条切线,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广西柳铁一中高三第三次月考文科数学试卷 题型:解答题

设函数为实数。

(Ⅰ)已知函数处取得极值,求的值;

(Ⅱ)已知不等式对任意都成立,求实数的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省高三第二阶段考试数学理卷 题型:解答题

(12分)已知函数处取得极值.

(Ⅰ)求实数的值;[来源:学+科+网]

(Ⅱ)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案