精英家教网 > 高中数学 > 题目详情

【题目】交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为,其范围为,分别有五个级别:畅通;基本畅通;轻度拥堵;中度拥堵;严重拥堵.晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通拥堵指数数据绘制的直方图如图所示.

(Ⅰ)用分层抽样的方法从交通指数在的路段中共抽取个路段,求依次抽取的三个级别路段的个数;

(Ⅱ)从(Ⅰ)中抽出的个路段中任取个,求至少有个路段为轻度拥堵的概率.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)分别求这三个级别的路段,然后求抽样比,再求三个级别抽取的路段的个数;

(Ⅱ)根据(Ⅰ)的结果,分别设个轻度拥堵路段为,选取的个中度拥堵路段为,选取的个严重拥堵路段为,然后按照列举法求概率.

(Ⅰ)由直方图可知:

.

所以这20个路段中,轻度拥堵、中度拥堵、严重拥堵路段分别为6个,9个,3.

拥堵路段共有个,按分层抽样从18个路段中选出6个,

每种情况分别为:

即这三个级别路段中分别抽取的个数为.

(Ⅱ)记(Ⅰ)中选取的个轻度拥堵路段为,选取的个中度拥堵路段为,选取的个严重拥堵路段为,则从个路段选取个路段的可能情况如下:

,共15种可能,

其中至少有个轻度拥堵的有:

,共9种可能,所以所选个路段中至少个路段轻度拥堵的概率为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于,若数列满足,则称这个数列为“K数列”.

(Ⅰ)已知数列:1m+1m2是“K数列”,求实数的取值范围;

(Ⅱ)是否存在首项为-1的等差数列为“K数列”,且其前n项和满足

?若存在,求出的通项公式;若不存在,请说明理由;

(Ⅲ)已知各项均为正整数的等比数列是“K数列”,数列不是“K数列”,若,试判断数列是否为“K数列”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系中的坐标原点为极点,轴的正半抽为极轴,建立极坐标系,曲线的极坐标方程是,直线的参数方程是为参数).

1)求曲线的直角坐标方程;

2)若直线与曲线交于两点,且,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的个数是(

①直线上有两个点到平面的距离相等,则这条直线和这个平面平行;

为异面直线,则过且与平行的平面有且仅有一个;

③直四棱柱是直平行六面体;

④两相邻侧面所成角相等的棱锥是正棱锥.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若内单调递减,求实数的取值范围;

(Ⅱ)若函数有两个极值点分别为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求证:

(2)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足

(1)求的通项公式;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与定直线相切.

1)求动圆圆心的轨迹的方程;

2)过点的任一条直线与轨迹交于不同的两点,试探究在轴上是否存在定点(异于点),使得?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘徽《九章算术商功》中将底面为长方形,两个三角面与底面垂直的四棱锥体叫做阳马.如图,是一个阳马的三视图,则其外接球的体积为(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案