精英家教网 > 高中数学 > 题目详情

【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.
(1)求x和y的值;
(2)计算甲班7位学生成绩的方差s2
(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.

【答案】
(1)解:∵甲班学生的平均分是85,

∴x=5,

∵乙班学生成绩的中位数是83,∴y=3


(2)解:甲班7位学生成绩的方差为s2= =40
(3)解:甲班成绩在90分以上的学生有两名,分别记为A,B,

乙班成绩在90分以上的学生有三名,分别记为C,D,E,

从这五名学生任意抽取两名学生共有10种情况:

(A,B),(A,C),(A,D),(A,E),

(B,C),(B,D),(B,E),

(C,D),(C,E),

(D,E)

其中甲班至少有一名学生共有7种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E).

记“从成绩在90分以上的学生中随机抽取两名学生,

甲班至少有一名学生”为事件M,则

答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为


【解析】(1)利用平均数求出x的值,中位数求出y的值,解答即可.(2)根据所给的茎叶图,得出甲班7位学生成绩,做出这7次成绩的平均数,把7次成绩和平均数代入方差的计算公式,求出这组数据的方差.(3)设甲班至少有一名学生为事件A,其对立事件为从成绩在90分以上的学生中随机抽取两名学生,甲班没有一名学生;先计算出从成绩在90分以上的学生中随机抽取两名学生的所有抽取方法总数,和没有甲班一名学生的方法数目,先求出从成绩在90分以上的学生中随机抽取两名学生,甲班没有一名学生的概率,进而结合对立事件的概率性质求得答案.
【考点精析】通过灵活运用茎叶图和极差、方差与标准差,掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少;标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC中,A(1,3),BC边所在的直线方程为y﹣1=0,AB边上的中线所在的直线方程为x﹣3y+4=0. (Ⅰ)求B,C点的坐标;
(Ⅱ)求△ABC的外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽车费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元,问这种汽车使用多少年时,它的平均费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入了部分数据,如表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

5

﹣5

0


(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为( ,0),求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为(x﹣1)2+(y﹣2)2=4. (Ⅰ)求过点M(3,1)的圆C的切线方程;
(Ⅱ)判断直线ax﹣y+3=0与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)过点( ,﹣ ),且离心率为 . (Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点A(x1 , y1),B(x2 , y2)是椭圆C上的亮点,且x1≠x2 , 点P(1,0),证明:△PAB不可能为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)解不等式 >0 (Ⅱ)设a>0,b>0,c>0,且a+b+c=1,求证( ﹣1)( ﹣1)( ﹣1)≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

x

2x+

sin(2x+

f(x)


(1)用五点法完成下列表格,并画出函数f(x)在区间 上的简图;
(2)若 ,函数g(x)=f(x)+m的最小值为2,试求处函数g(x)的最大值,指出x取值时,函数g(x)取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=tan(ωx﹣)(ω>0)的最小正周期为2π.
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)求不等式f(x)>﹣1的解集.

查看答案和解析>>

同步练习册答案