精英家教网 > 高中数学 > 题目详情

【题目】

(1)求的单调区间;

(2)在锐角中,角的对边分别为 ,求面积的最大值.

【答案】(1)增区间,减区间为;(2)

【解析】试题分析:(1)将函数化为,然后根据正弦函数的单调区间求解;

(2)求得,然后根据余弦定理得到,由基本不等式可得,进而可得三角形面积的最大值。

试题解析

(1)由题意知

由-+2kπ≤2x≤+2kπ,k∈Z,

可得-+kπ≤x≤+kπ,k∈Z;

+2kπ≤2x≤+2kπ,k∈Z,

可得+kπ≤x≤+kπ,k∈Z.

所以f(x)的单调递增区间是[-+kπ, +kπ](kZ);单调递减区间是[+kπ, +kπ](kZ).

(2)由f()=sinA-=0,得sinA=

由题意知A为锐角,

所以cosA=

由余弦定理得

所以,当且仅当b=c时等号成立,

所以

所以

所以△ABC面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数, 已知曲线y=f(x)

处的切线与直线垂直。

(1) 的值;

(2) 若对任意x1,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在其定义域内有两个不同的极值点.

(1)求的取值范围.

(2)设的两个极值点为,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 为自然对数的底数, …).

(1)若函数仅有一个极值点,求的取值范围;

(2)证明:当时,函数有两个零点 ,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c在x=﹣ 与x=1时都取得极值.
(1)求a、b的值与函数f(x)的单调区间;
(2)若对x∈[﹣1,2],不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax2+(2﹣a)x. (Ⅰ)讨论f(x)的单调性;
(Ⅱ)设a>0,证明:当0<x< 时,f( +x)>f( ﹣x);
(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0 , 证明:f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex
(Ⅰ)求曲线f(x)过O(0,0)的切线l方程;
(Ⅱ)求曲线f(x)与直线x=0,x=1及x轴所围图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40m的半圆形O为圆心,AB为直径绿化区域,现计划对其进行改建.在AB的延长线上取点D,使OD=80m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2. 设∠AOC=x rad.

(1)写出S关于x的函数关系式S(x),并指出x的取值范围;

(2)张强同学说:当∠AOC=时,改建后的绿化区域面积S最大.张强同学的说法正确吗?若不正确,请求出改建后的绿化区域面积S最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin (2x+ ).
(1)求函数f(x)的最小正周期及其单调减区间;
(2)用“五点法”画出函数g(x)=f(x),x∈[﹣ ]的图象(完成列表格并作图),由图象研究并写出g(x)的对称轴和对称中心.

查看答案和解析>>

同步练习册答案