精英家教网 > 高中数学 > 题目详情

已知等差数列满足:=2,且成等比数列.
(1)求数列的通项公式.
(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.

(1)
(2)当时,不存在满足题意的n;当时,存在满足题意的n,其最小值为41.

解析试题分析:(1)本小题利用基本量法,设公差为,则成等比可转化为关于的方程,解出即可写其通项公式;(2)在上小题已得的等差数列的前提下,求出其前n项和,利用转化为不等解集问题的分析即可,同时要注意n为正整数.
试题解析:(1)设数列的公差为,依题意,成等比数列,故有
化简得,解得.当时,;当时,
从而得数列的通项公式为.
(2)当时,.显然,此时不存在正整数n,使得成立.
时,.令,即,解得(舍去),此时存在正整数n,使得成立,n的最小值为41.
综上,当时,不存在满足题意的n;当时,存在满足题意的n,其最小值为41.
考点:等差与等比数列的定义,通项公式,等差数列的前n项和公式,解一元二次不等式,分类讨论与化归思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

在等差数列{}中,              

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知数列{an}的前n项和,那么它的通项公式为an=_________ 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列{},=25,=15,数列{}的前n项和为
(1)求数列{}和{}的通项公式;
(2)求数列{}的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:=2,且成等比数列.
(1)求数列的通项公式.
(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等差数列,且.
(1)求的通项公式;(2)若等比数列满足,求的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an+1+log2an(n=1,2,3,…),求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和为
(1)求数列的通项公式及前项和公式;
(2)设数列的通项公式为,问: 是否存在正整数t,使得成等差数列?若存在,求出t和m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分16分)
设数列的前项和为.若对任意的正整数,总存在正整数,使得,则称是“数列”.
(1)若数列的前项和为,证明:是“数列”.
(2)设是等差数列,其首项,公差,若是“数列”,求的值;
(3)证明:对任意的等差数列,总存在两个“数列” ,使得成立.

查看答案和解析>>

同步练习册答案