精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,,其余棱长均为是棱上的一点,分别为棱的中点.

(1)求证: 平面平面

(2)若平面,求的长.

【答案】(1)证明见解析;(2).

【解析】分析:(1)先证明PE ⊥平面ABC,再证明平面平面.(2) 连接CD交AE于O,连接OM,先证明PDOM,再利用相似求出的长.

详解:(1)证明:如图,连结PE.

因为△PBC的边长为2的正三角形,E为BC中点,

所以PE⊥BC,

且PE=,同理AE=

因为PA,所以PE2AE2PA2,所以PEAE

因为PE⊥BC,PE⊥AE,BC∩AE=E,AE,BC 平面ABC,

所以PE ⊥平面ABC

因为PE平面PBC,

所以平面PBC⊥平面ABC

(2)如图,连接CD交AE于O,连接OM.

因为PD∥平面AEM,PD平面PDC,平面AEM∩平面PDC=OM,

所以PDOM 所以

因为D,E分别为AB,BC的中点,CD∩AE=O,

所以OABC重心,所以

所以PMPC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为虚数集,设,则下列类比所得的结论正确的是__________

①由,类比得

②由,类比得

③由,类比得

④由,类比得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若,求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集为R,集合A={x|( x≤1},B={x|x2﹣6x+8≤0},则A∩(RB)=(
A.{x|x≤0}
B.{x|2≤x≤4}
C.{x|0≤x<2或x>4}
D.{x|0<x≤2或x≥4}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1 , x2(x1<x2)( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的焦点为,点是抛物线上一点,且

(1)求的值;

(2)若为抛物线上异于的两点,且.记点到直线的距离分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学一名数学老师对全班50名学生某次考试成绩分男女生进行统计(满分150分),其中120分(含120分)以上为优秀,绘制了如图所示的两个频率分布直方图:

(1)根据以上两个直方图完成下面的列联表:

性别 成绩

优秀

不优秀

总计

男生

女生

总计

(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个篮球队在4次不同比赛中的得分情况如下:

甲队

88

91

92

96

乙队

89

93

9▓

92

乙队记录中有一个数字模糊(即表中阴影部分),无法确认,假设这个数字具有随机性,并用表示.

(Ⅰ)在4次比赛中,求乙队平均得分超过甲队平均得分的概率;

(Ⅱ)当时,分别从甲、乙两队的4次比赛中各随机选取1次,记这2个比赛得分之差的绝对值为,求随机变量的分布列;

(Ⅲ)如果乙队得分数据的方差不小于甲队得分数据的方差,写出的取值集合.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)如果曲线在点处的切线方程为,求 的值;

(2)若 ,关于的不等式的整数解有且只有一个,求的取值范围.

查看答案和解析>>

同步练习册答案