精英家教网 > 高中数学 > 题目详情
是两条不同的直线,是两个不同的平面,下列命题正确的是(   )
A.若B.若
C.若D.若
C

试题分析:A.若,不正确,m,n在两个平面内,可能平行、异面;
B.若,不正确,并没明确n在那个平面内;
C.若,正确。因为
所以,又,故,选C。
点评:典型题,要求牢记立体几何中的定理。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图几何体,是矩形,
上的点,且

(1)求证:
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将锐角为且边长是2的菱形,沿它的对角线折成60°的二面角,则(      )
①异面直线所成角的大小是       .
②点到平面的距离是       .
A.90°,B.90°,C.60°,D.60°,2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理)如图,将∠B=,边长为1的菱形ABCD沿对角线AC折成大小等于θ的二面角BACD,若θ∈[,],MN分别为ACBD的中点,则下面的四种说法:

ACMN
DM与平面ABC所成的角是θ
③线段MN的最大值是,最小值是;
④当θ=时,BCAD所成的角等于.
其中正确的说法有    (填上所有正确说法的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图所示是一个半圆柱与三棱柱的组合体,其中,圆柱的轴截面是边长为4的正方形,为等腰直角三角形,.

试在给出的坐标纸上画出此组合体的三视图.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面⊥平面是直角三角形,,四边形是直角梯形,其中,,且的中点,分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面,且,给出下列命题
(1)若,则    (2)若,则
(3)若,则  (4)若,则
其中正确的命题个数是( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图所示,在三棱柱中,点为棱的中点.

(1)求证:.
(2)若三棱柱为直三棱柱,且各棱长均为,求异面直线所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四个命题中,真命题的个数为(   )(1)若两平面有三个公共点,则这两个平面重合;(2)两条直线可以确定一个平面;(3)若;(4)空间中,相交于同一点的三条直线在同一平面内。
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案