精英家教网 > 高中数学 > 题目详情

【题目】中国古代儒家要求学生掌握六种基本才能:礼乐射御书数,某校国学社团周末开展六艺课程讲座活动,每天连排六节,每艺一节,排课有如下要求:不能相邻,必须相邻,则六艺课程讲座不同的排课顺序共有(

A.24B.72C.96D.144

【答案】D

【解析】

捆绑作为一体,并排列,,先排列除外的课程,即,在利用插空法排列”,进而求解.

由题,因为必须相邻,捆绑为一体,排列可得,

则排列射乐可得,

因为不能相邻,利用插空法可得,再排列,,

所以六艺课程讲座不同的排课顺序为,

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线E的参数方程为为参数),以O为极点,x轴非负半轴为极轴建立极坐标系,直线的极坐标方程分别为交曲线E于点AB交曲线E于点CD.

1)求曲线E的普通方程及极坐标方程;

2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且处取得极值.

)若关于的方程在区间上有解,求的取值范围;

)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,GH分别为上的点,平面平面.

1)证明:平面平面

2)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,,侧面底面D是棱的中点.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为为参数, ).

(1)求曲线的直角坐标方程和直线的普通方程;

(2)若曲线上的动点到直线的最大距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,准线为为抛物线过焦点的弦,已知以为直径的圆与相切于点.

1)求的值及圆的方程;

2)设上任意一点,过点的切线,切点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动直线l过抛物线Cy24x的焦点F,且与抛物线C交于MN两点,且点Mx轴上方.

1)若线段MN的垂直平分线交x轴于点Q,若|FQ|8,求直线l的斜率;

2)设点Px00),若点M恒在以FP为直径的圆外,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在四边形中,.沿着翻折至的位置,平面,连结,如图2.

1)当时,证明:平面平面

2)当三棱锥的体积最大时,求点到平面的距离.

查看答案和解析>>

同步练习册答案