精英家教网 > 高中数学 > 题目详情
已知定义在R上的奇函数f(x)=
4x+b
ax2+1
的导函数为f′(x),且f′(x),在点x=1处取得极值.
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间(m,m+2)上是增函数,求实数m所有取值的集合;
(3)当x1,x2∈R时,求f′(x1)-f′(x2)的最大值.
(1)∵f(x)=
4x+b
ax2+1
是奇函数,∴f(0)=0,求得b=0,
又∵f′(x)=
4(ax2+1)-4x•2ax
(ax2+1)2
,且f(x)在点x=1处取得极值,
∴f′(1)=0,解得a=1,故f(x)=
4x
x2+1

(2)∵f′(x)=
-4(x-1)(x+1)
(x2+1)2
,由f′(x)>0得,-1<x<1,
∴f(x)的单调递增区间为(-1,1).
若f(x)在区间(m,m+2)上是增函数,则有m=-1.
即m取值的集合为{-1}.
(3)∵f′(x)=
-4(x-1)(x+1)
(x2+1)2
=4[
2
(x2+1)2
-
1
x2+1
]

t=
1
x2+1
,则f′(x)=g(t)=4(2t2-t)=8(t-
1
4
)
2
-
1
2
,t∈(0,1]

f′(x)∈[-
1
2
,4]

f′(x1)-f′(x2)≤4-(-
1
2
)=
9
2

∴f′(x1)-f′(x2)的最大值为
9
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤
π2
时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:大连二十三中学2011学年度高二年级期末测试试卷数学(理) 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,2]上是增函

数,则(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高二下学期期末考试理科数学试卷 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,1]上是增函

数,若方程在区间上有四个不同的根,则

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤数学公式时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案