右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)请画出该几何体的三视图;
(2)求四棱锥BCEPD的体积.
科目:高中数学 来源: 题型:解答题
如图,在直角梯形ABEF中,,,讲DCEF沿CD折起,使得,得到一个几何体,
(1)求证:平面ADF;
(2)求证:AF平面ABCD;
(3)求三棱锥E-BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=AB.
(1)求证:EF∥平面BC1D;
(2)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.
(1)求证:;
(2)在棱上确定一点,使、、、四点共面,并求此时的长;
(3)求几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=∠CAD=90°,且PA=AB=BC,点E是棱PB上的动点.
(1)若PD∥平面EAC,试确定点E在棱PB上的位置.
(2)在(1)的条件下,求二面角A-CE-P的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=.
(1)证明:PC⊥BD;
(2)若E为PA的中点,求三棱锥P-BCE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
下图是一几何体的直观图、主视图、俯视图、左视图.
(1)若F为PD的中点,求证:AF⊥面PCD;
(2)证明:BD∥面PEC;
(3)求该几何体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com