精英家教网 > 高中数学 > 题目详情

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示

(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;

甲公司新研制了一款产品,需要采购一批新型材料,现有两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不同,现对两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

使用寿命/材料类型

1个月

2个月

3个月

4个月

总计

A

20

35

35

10

100

B

10

30

40

20

100

经甲公司测算平均每包新型材料每月可以带来万元收入,不考虑除采购成本之外的其他成本,材料每包的成本为万元, 材料每包的成本为万元.假设每包新型材料的使用寿命都是整月数,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?

参考数据:

参考公式:回归直线方程,其中

【答案】(1),预计甲公司2019年3月份的利润为百万元(2)见解析

【解析】

(1)根据数据求得b、a即可得回归直线方程,代入预测月份对应的自变量x的值,即可得预测值。

(2)分别计算两种情况下的数学期望,比较大小即可得出结论。

解(1)由折线图可知统计数据共有组,

计算可得

所以

所以月度利润与月份代码之间的线性回归方程为.

时,.

故预计甲公司2019年3月份的利润为百万元。

(2)由频率估计概率,每包型新材料可使用个月,个月,个月和个月的概率分别为.

所以每包型新材料可产生的利润期望值

.

由频率估计概率,每包型新材料可使用个月,个月,个月和个月的概率分别为

所以每包型新材料可产生的利润期望值

.

.

所以应该采购型新材料。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体中, 分别是棱 的中点,点 分别在棱 上移动,且.

(1)当时,证明:直线平面

(2)是否存在,使面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5: 不等式选讲

已知函数f(x) 的定义域为R.

()求实数m的取值范围;

()m的最大值为n,当正数ab满足 n时,求7a4b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,假命题的是( )

A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交.

B.平行于同一平面的两条直线一定平行.

C.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面.

D.若直线不平行于平面,且不在平面内,则在平面内不存在与平行的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的左、右焦点分别为.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.

(1)求椭圆的标准方程;

(2)是否存在直线与椭圆相交于两点,使得?若存在,求的取值范围;若不存在,请说明理由!

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )

A. 134 B. 67 C. 200 D. 250

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,且圆心在直线上.

Ⅰ)求此圆的方程

(Ⅱ)求与直线垂直且与圆相切的直线方程.

(Ⅲ)若点为圆上任意点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,定直线,动圆经过点且与直线相切.

(I)求动圆圆心的轨迹方程;

(II)设点为曲线上不同的两点,且,过两点分别作曲线的两条切线,且二者相交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长为的等边三角形内任一点到三边距离之和为定值,这个定值等于;将这个结论推广到空间是:棱长为的正四面体内任一点到各面距离之和等于________________.(具体数值)

查看答案和解析>>

同步练习册答案