精英家教网 > 高中数学 > 题目详情

【题目】以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C1的参数方程为 ,(α为参数,且α∈[0,π)),曲线C2的极坐标方程为ρ=﹣2sinθ.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若P是C1上任意一点,过点P的直线l交C2于点M,N,求|PM||PN|的取值范围.

【答案】
(1)

解:消去参数可得x2+y2=1,因为α∈[0,π),所以﹣1≤x≤1,0≤y≤1,

所以曲线C1是x2+y2=1在x轴上方的部分,

所以曲线C1的极坐标方程为ρ=1(0≤θ≤π).

曲线C2的直角坐标方程为x2+(y+1)2=1


(2)

解:设P(x0,y0),则0≤y0≤1,直线l的倾斜角为α,

则直线l的参数方程为: (t为参数).

代入C2的直角坐标方程得(x0+tcosα)2+(y0+tsinα+1)2=1,

由直线参数方程中t的几何意义可知|PM||PN|=|1+2y0|,

因为0≤y0≤1,所以|PM||PN|=∈[1,3]


【解析】(1)求出C1的普通方程,即可求C1的极坐标方程,利用极坐标方程与直角坐标方程的互化方法得出C2的直角坐标方程;(2)直线l的参数方程为: (t为参数),代入C2的直角坐标方程得(x0+tcosα)2+(y0+tsinα+1)2=1,由直线参数方程中t的几何意义可知|PM||PN|=|1+2y0|,即可求|PM||PN|的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为(
A.101
B.808
C.1212
D.2012

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)经过点(2, )且离心率等于 ,点A,B分别为椭圆C的左右顶点,点P在椭圆C上.
(1)求椭圆C的方程;
(2)M,N是椭圆C上非顶点的两点,满足OM∥AP,ON∥BP,求证:三角形MON的面积是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx+ ﹣mx(m∈R).
(Ⅰ)当m=﹣1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在(0,+∞)上为单调递减,求m的取值范围;
(Ⅲ)设0<a<b,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AD是角A的平分线.
(1)用正弦定理或余弦定理证明:
(2)已知AB=2.BC=4, ,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解关于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集为(﹣1,3),求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题一定正确的是(
A.在等差数列{an}中,若ap+aq=ar+aδ , 则p+q=r+δ
B.已知数列{an}的前n项和为Sn , 若{an}是等比数列,则Sk , S2k﹣Sk , S3k﹣S2k也是等比数列
C.在数列{an}中,若ap+aq=2ar , 则ap , ar , aq成等差数列
D.在数列{an}中,若ap?aq=a ,则ap , ar , aq成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全函数f(x)的图象,并根据图象写出函数f(x)(x∈R)的递增区间;

(2)写出函数f(x)(x∈R)的值域;
(3)写出函数f(x)(x∈R)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0, ),则函数g(x)=cos(2x﹣φ)的图象(
A.关于点( ,0)对称
B.可由函数f(x)的图象向右平移 个单位得到
C.可由函数f(x)的图象向左平移 个单位得到
D.可由函数f(x)的图象向左平移 个单位得到

查看答案和解析>>

同步练习册答案