精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(1)讨论函数的单调性;

(2)若,讨论函数在区间上的最值.

【答案】(1)见解析;(2)见解析.

【解析】

1)求出,分三种情况讨论的范围,在定义域内,分别由求出的范围,可得增区间;由求出的范围, 可得减区间;(2)由(1)得,当时,函数在区间上单调递减,在区间上单调递增,分四种情况讨论,分别利用导数判断函数在上的单调性,利用单调性求出极值,与的值比较大小,进而可得结果.

(1)函数的定义域是.

.

时,令,得;令,得

所以函数在区间上单调递增,在区间上单调递减;

时,令,得;令,得

所以函数在区间上单调递减,在区间上单调递增.

(2)由(1)得,当时,函数在区间上单调递减,在区间上单调递增.

①当,即时,函数在区间上单调递减,所以函数上的最大值为,最小值为

②当,即时,函数在区间上单调递增,所以函数上的最大值为,最小值为

③当,即时,函数在区间上单调递减,在区间上单调递增,所以函数上的最小值为.

最大值为中的较大者.下面比较的大小:

因为

,得,化简得

解得 .因为,且

所以.

所以当时,,函数上的最大值为

时,,函数上的最大值为

时,,函数上的最大值为.

综上,当时,函数上的最大值为,最小值为

时,函数上的最大值为;最小值为

时,函数上的最大值为,最小值为

时,函数上的最大值为,最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】进入月份,香港大学自主招生开始报名,“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图:

(1)估计五校学生综合素质成绩的平均值;

(2)某校决定从本校综合素质成绩排名前名同学中,推荐人参加自主招生考试,若已知名同学中有名理科生,2名文科生,试求这3人中含文科生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个圆经过点,且和直线相切.

1)求动圆圆心的轨迹的方程;

2)已知点,设不垂直于轴的直线与轨迹交于不同的两点,若轴是的角平分线,证明直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】篮球运动于1891年起源于美国,它是由美国马萨诸塞州斯普林菲尔德(旧译麻省春田)市基督教青年会()训练学校的体育教师詹姆士·奈史密斯博士()发明.它是以投篮、上篮和扣篮为中心的对抗性体育运动之一,是可以增强体质的一种运动.已知篮球的比赛中,得分规则如下:3分线外侧投入可得3分,3分线内侧投入可得2分,不进得0分.经过多次试验,某人投篮100次,有20个是3分线外侧投入,30个是3分线内侧投入,其余不能入篮,且每次投篮为相互独立事件.

(1)求该人在4次投篮中恰有三次是3分线外侧投入的概率;

(2)求该人在4次投篮中至少有一次是3分线外侧投入的概率;

(3)求该人两次投篮后得分的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为调研学校师生的环境保护意识,决定在本市所有学校中随机抽取60所进行环境综合考评成绩达到80分以上(含80分)为达标.60所学校的考评结果频率分布直方图如图所示(其分组区间为[5060),[6070),[7080),[8090),[90100]).

)试根据样本估汁全市学校环境综合考评的达标率;

)若考评成绩在[90.100]内为优秀.且甲乙两所学校考评结果均为优秀从考评结果为优秀的学校中随机地抽取两所学校作经验交流报告,求甲乙两所学校至少有一所被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的图象在点处的切线方程;

(Ⅱ)若,且对任意恒成立,求的最大值;

(Ⅲ)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求实数的取值范围;

(2)设函数的极大值为,极小值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足),).

(1)若,证明:是等比数列;

(2)若存在,使得成等差数列.

① 求数列的通项公式;

② 证明:

查看答案和解析>>

同步练习册答案