精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式x3-x2+ax,g(x)=2x+b,当x=1+数学公式时,f(x)取得极值.
(Ⅰ)求a的值
(Ⅱ)当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求b的取值范围.

解:(I)由题意f'(x)=x2-2x+a,
∵当x=1+时,f(x)取得极值,
∴所以

∴即a=-1
(2)设f(x)=g(x),则 -3x-b=0,b=-3x,
设F(x)=-3x,G(x)=b,F'(x)=x2-2x-3,令F'(x)=x2-2x-3=0解得x=-1或x=3,
∴函数F(x)在(-3,-1)和(3,4)上是增函数,在(-1,3)上是减函数.
当x=-1时,F(x)有极大值F(-1)=;当x=3时,F(x)有极小值F(3)=-9,
∵函数f(x)与g(x)的图象有两个公共点,F(-3)=-9,F(4)=-
∴函数F(x)与G(x)的图象有两个公共点,结合图象可得
∴-或b=-9,

分析:(I)根据已知中函数的解析式,求出其导函数的解析式,利用函数在极值点的导数等于0,可求出a的值.(II)设f(x)=g(x),则得 .设 ,G(x)=b,由F'(x)的符号判断
函数F(x)的单调性和单调区间,从而求出F(x)的值域,由题意得,函数F(x)与G(x)的图象有两个公共点,
从而得到b的取值范围.
点评:本题考查函数在极值点的导数等于0,利用导数的符号判断函数的单调性及单调区间、极值,求函数在闭区间上的值域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案