精英家教网 > 高中数学 > 题目详情
已知点F是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦点,若过点F且倾斜角为60°的直线与双曲线的右支有两个交点,则该双曲线的离心率e的取值范围是(  )
分析:依题意,双曲线的一条渐近线的斜率k=
b
a
<tan60°,从而可求得其离心率e的取值范围.
解答:解:∵过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右焦点F且倾斜角为60°的直线与双曲线的右支有两个交点,
∴该双曲线的一条渐近线y=
b
a
x的斜率k=
b
a
<tan60°=
3

b2
a2
<3,又b2=c2-a2,e=
c
a

c2-a2
a2
<3,
c2
a2
<4,即e2<4,又e>1,
∴1<e<2.
故选A.
点评:本题考查双曲线的简单性质,理解题意得到
b
a
<tan60°是关键,也是难点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(4,6),点P是双曲线C:x2-
y215
=1
上的一个动点,点F是双曲线C的右焦点,则PA+PF的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F是双曲线C:x2-y2=2的左焦点,直线l与双曲线C交于A、B两点,
(1)若直线l过点P(1,2),且
OA
+
OB
=2
OP
,求直线l的方程.
(2)若直线l过点F且与双曲线的左右两支分别交于A、B两点,设
FB
FA
,当λ∈[6,+∞)时,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F是双曲线x2-
y2
2
=1
的一个焦点,过点F作直线l交双曲线于两点P、Q,若|PQ|=4,则这样的直线l有且仅有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

(A题)已知点P是圆x2+y2=4上一动点,直线l是圆在P点处的切线,动抛物线以直线l为准线且恒经过定点A(-1,0)和B(1,0),则抛物线焦点F的轨迹为


  1. A.
  2. B.
    椭圆
  3. C.
    双曲线
  4. D.
    抛物线

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆一中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知点F是双曲线C:x2-y2=2的左焦点,直线l与双曲线C交于A、B两点,
(1)若直线l过点P(1,2),且,求直线l的方程.
(2)若直线l过点F且与双曲线的左右两支分别交于A、B两点,设,当λ∈[6,+∞)时,求直线l的斜率k的取值范围.

查看答案和解析>>

同步练习册答案