精英家教网 > 高中数学 > 题目详情
设函数f(x)=
3x
3x+
3
上两点P1(x1,y1)、P2(x2,y2),若
OP
=
1
2
(
OP1
+
OP2
)
,且P点的横坐标为
1
2

(1)求证:P点的纵坐标为定值,并求出这个值;
(2)若Sn=
n
i=1
f(
i
n
)
,n∈N*,求Sn
(3)记Tn为数列{
1
(Sn+
3
2
)(Sn+1+
3
2
)
}
的前n项和,若Tn<a•(Sn+2+
3
2
)
对一切n∈N*都成立,试求实数a的取值范围.
分析:(1)可设
OP
=(
1
2
yp)
,由
OP
=
1
2
(
OP1
+
OP2
)
,可得x1+x2=1,yp=
y1+y2
2
,代入解析式验证即可.
(2)由(1)知y1+y2=f(x1)+f(x2)=1,f(1)=
3-
3
2
,而由Sn=f(
1
n
)+f(
2
n
)++f(
n-1
n
)+f(
n
n
)
,可变形为Sn=f(
n-1
n
)+f(
n-2
n
)++f(
1
n
)+f(
n
n
)
两式相加可得到解决.
(3)由(2)知Sn=
n+2-
3
2
所以可得到Sn+
3
2
=
n+2
2
Sn+1+
3
2
=
n+3
2
1
(Sn+
3
2
)(Sn+1+
3
2
)
可变形为
4
(n+2)(n+3)
裂项求得Tn,再研究恒成立问题.
解答:解:(1)设
OP
=(
1
2
yp)

又∵
OP
=
1
2
(
OP1
+
OP2
)

x1+x2=1,yp=
y1+y2
2

y1+y2=
3x1
3x1+
3
+
3x2
3x2+
3
=1

yp=
y1+y2
2
=
1
2


(2)由x1+x2=1,得y1+y2=f(x1)+f(x2)=1,f(1)=
3-
3
2

Sn=f(
1
n
)+f(
2
n
)++f(
n-1
n
)+f(
n
n
)

Sn=f(
n-1
n
)+f(
n-2
n
)++f(
1
n
)+f(
n
n
)

2Sn=
1+1++1+1+1
n-1个
+2f(1)=n+2-
3
,即Sn=
n+2-
3
2

(3)∵Sn+
3
2
=
n+2
2
,∴Sn+1+
3
2
=
n+3
2
,∴
1
(Sn+
3
2
)(Sn+1+
3
2
)
=
4
(n+2)(n+3)

从而Tn=4[
1
3×4
+
1
4×5
++
1
(n+2)(n+3)
]=
4
3
n
n+3

Tn<a(Sn+2+
3
2
),Sn+2+
3
2
>0
,∴a>
Tn
Sn+2+
3
2
=
8
3
n
(n+3)(n+4)
=
8
3
1
n+
12
n
+7

g(n)=n+
12
n
,易证g(n)在[2
3
,+∞)
上是增函数,在(0,2
3
)
上是减函数,我
且g(3)=7,g(4)=7,∴g(n)的最大值为7,即
8
3
1
n+
12
n
+7
4
21

a>
4
21
点评:本题主要考查函数与数列间的渗透,两者都有规律可循经常结合为难度较大的题目,解决思路往往是通过函数的规律,由点的坐标建立数列模型来考查数列的通项或前N项和,进而设置不等式恒成立问题,考查数列的增减性或放缩的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
3x+4
x2+1
,g(x)=
6a2
x+a
,a
1
3

(1)求函数f(x)的极大值与极小值;
(2)若对函数的x0∈[0,a],总存在相应的x1,x2∈[0,a],使得g(x1)≤f(x0)≤g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x,x≤0
log3x,x>0
,则f[f(-1)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x+1
x2-1
-
2
x-1
(x≠1)
a(x=1)
在x=1处连续,则a的值为(  )
A、
1
2
B、
1
4
C、-
1
3
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x,x∈(-∞,1]
log81x,x∈(1,+∞).
f(f(
1
4
))
的值为
1
16
1
16

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
x
+lnx
,则(  )

查看答案和解析>>

同步练习册答案