精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(2cosx, sinx), =(3cosx,﹣2cosx),设函数f(x)=
(1)求f(x)的最小正周期;
(2)若x∈[0, ],求f(x)的值域.

【答案】
(1)解:∵ =(2cosx, sinx), =(3cosx,﹣2cosx),

∴f(x)= =(2cosx, sinx)(3cosx,﹣2cosx)=

=6× =

=

函数f(x)的最小正周期为T=


(2)解:∵x∈[0, ],∴2x﹣ ∈[﹣ ],

则sin(2x﹣ )∈[﹣ ].

∴f(x)的值域为[ ,6]


【解析】由已知向量的坐标结合数量积可得f(x)的解析式,再由辅助角公式化简.(1)直接利用周期公式求得f(x)的最小正周期;(2)由x的范围结合三角函数的单调性求得求f(x)的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知0<a<1,f(x)=ax , g(x)=logax,h(x)= ,当x>1时,则有(
A.f(x)<g(x)<h(x)
B.g(x)<f(x)<h(x)
C.g(x)<h(x)<f(x)
D.h(x)<g(x)<f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(不等式选讲)

已知函数

(1)若,解不等式

(2)若不等式在R上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=lnx+ax2﹣(a+2)x在 处取得极大值,则正数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中是自然常数,

(1)时,求的单调性和极值;

(2)恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 通项公式为
(1)计算f(1),f(2),f(3)的值;
(2)比较f(n)与1的大小,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的右焦点F(1,0),离心率为 ,过F作两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.

(1)求椭圆的方程;
(2)证明:直线MN必过定点,并求出此定点坐标;
(3)若弦AB,CD的斜率均存在,求△FMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x人,他们加工完甲型装置所需时间为t1小时,其余工人加工完乙型装置所需时间为t2小时.

f(x)=t1t2

(Ⅰ)求f(x)的解析式,并写出其定义域;

(Ⅱ)当x等于多少时,f(x)取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,sinA=sinBsinC,则tanB+2tanC的最小值是

查看答案和解析>>

同步练习册答案