精英家教网 > 高中数学 > 题目详情

设数列的前项和为,且为等差数列,且

(1)求数列通项公式;

(2)设,求数列的前项和

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.椭圆$\frac{{x}^{2}}{3}$+y2=1两焦点之间的距离为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高二文下学期期末考试数学试卷(解析版) 题型:选择题

函数的值域是( )

A、 B、 C、 D、

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市为鼓励居民节约用水,将实行阶梯水价,该市每户居民每月用水量划分为三级,水价实行分级递增.第一级水量:用水量不超过20吨,水价标准为1.5元/吨; 第二级水量:用水量超过20但不超过30吨,超出第一级水量的部分,水价为2.25元/吨; 第三级水量:用水量超过30吨,超出第二级水量的部分,水价为3.0元/吨.随机调查了该市1000户居民,获得了他们某月的用水量数据,整理得到如下的频率分布表:
用水量(吨)[0,10](10,20](20,30](30,40](40,50]合计
频数200400200b1001000
频率0.2a0.20.1c1
(Ⅰ)根据频率分布表中的数据,写出a,b,c的值;从该市调查的1000户居民中随机抽取一户居民,求该户居民用水量不超过30吨的概率;
(Ⅱ)从1000户居民中按用水三个等级分层抽取5户幸运者,发给大奖两份和幸运奖三份共5份,每户一份,求两份大奖获得者的都是节水型用户(用水量不超过20吨的居民)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.$0<α<\frac{π}{2}$,且lg(1+cosα)=m,$lg\frac{1}{1-cosα}=n$,则lgsinα=$\frac{1}{2}$(m+$\frac{1}{n}$)(用m,n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足$\overrightarrow{MB}∥\overrightarrow{OA}$,$\overrightarrow{MA}•\overrightarrow{AB}=\overrightarrow{MB}•\overrightarrow{BA}$,求M点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设复数z1=1+i,z2=1-bi,若z1•z2为纯虚数,则实数b=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx,g(x)=x+$\frac{a}{x}$,a∈R.
(1)设F(x)=f(x)+g(x)-x,若F(x)在[1,e]上的最小值是$\frac{3}{2}$,求实数a的值;
(2)若x≥1时,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1.
(1)求f(x)的最大值,以及该函数取最大值时x的取值集合;
(2)在△ABC中,a、b、c分别是角A、B、C所对的边长,且a=1,b=$\sqrt{2}$,f(A)=2,求角C.

查看答案和解析>>

同步练习册答案