精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{lo{g}_{0.5}x,x>1}\end{array}\right.$若对于任意x∈R,不等式f(x)≤$\frac{{t}^{2}}{4}$-t+1恒成立,则实数t的取值范围是(-∞,1]∪[3,+∞).

分析 任意x∈R,不等式f(x)≤$\frac{{t}^{2}}{4}$-t+1恒成立?$\frac{{t}^{2}}{4}$-t+1≥f(x)max(x∈R),由二次函数与对数函数的单调性可求得f(x)max=f($\frac{1}{2}$)=$\frac{1}{4}$,解不等式$\frac{{t}^{2}}{4}$-t+1≥$\frac{1}{4}$,即可求得实数t的取值范围.

解答 解:∵f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{lo{g}_{0.5}x,x>1}\end{array}\right.$,
∴对于任意x∈R,不等式f(x)≤$\frac{{t}^{2}}{4}$-t+1恒成立?$\frac{{t}^{2}}{4}$-t+1≥f(x)max(x∈R),
又当x=$\frac{1}{2}$时,f(x)取到最大值,即f(x)max=f($\frac{1}{2}$)=-$\frac{1}{4}$+$\frac{1}{2}$=$\frac{1}{4}$,
∴$\frac{{t}^{2}}{4}$-t+1≥$\frac{1}{4}$,整理得:t2-4t+3≥0,
解得:t≥3或t≤1.
故答案为:(-∞,1]∪[3,+∞).

点评 本题考查函数恒成立问题,求得f(x)max=f($\frac{1}{2}$)=$\frac{1}{4}$是关键,考查等价转化思想与运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)是定义在R上偶函数,且在区间(-∞,0)上单调递减,则不等式f(x-3)<f(4)的解集为(-1,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=cosx-(sinx)2+2的值域为(  )
A.[1,3]B.[$\frac{1}{2}$,$\frac{11}{4}$]C.[$\frac{3}{4}$,3]D.[$\frac{3}{4}$,$\frac{11}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=lg(x2-x-6)的定义域为集合A,函数g(x)=$\sqrt{4-|x|}$的定义域为集合B.
(1)求A∩B;
(2)若C={x|m+1<x<2m-1},C⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义在R上的函数f(x)的图象关于原点对称,当x>0时,有f(x)=2x-log3(x2-3x+5),则f(-2)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面四个结论:
①平面EFGH∥平面ABCD;     
②平面PAD∥BC;      
③平面PCD∥AB;
④平面PAD∥平面PAB.
其中正确的有①②③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合U=R,函数f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定义域为集合A,集合B={x|2≤x<10},集合C={x|x>a}.
(1)求A,(∁UA)∩B;
(2)若(∁UB)∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知n∈N*,数列{an}的各项为正数,前n项的和为Sn,且a1=1,a2=2,设bn=a2n-1+a2n
(1)如果数列{bn}是公比为3的等比数列,求S2n
(2)如果对任意n∈N*,Sn=$\frac{{a}_{n}^{2}+n}{2}$恒成立,求数列{an}的通项公式;
(3)如果S2n=3(2n-1),数列{anan+1}也为等比数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.甲、乙、丙三名射击运动员射中目标的概率分别为$\frac{1}{2}$、a、a(0<a<1),三人各射击一次,击中目标的次数记为ξ.在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,则实数a的取值范围是$(0,\frac{1}{2}]$.

查看答案和解析>>

同步练习册答案