精英家教网 > 高中数学 > 题目详情

【题目】已知集合M={ ( x y ) | y=f(x) },若对于任意( x1 y1 )∈M,都存在( x2 y2 )∈M,使得x1 x2y1 y2 =0成立,则称集合M是“理想集合”,则下列集合是理想集合的是(  )

A. M={ ( x y ) | y= } B. M={ ( x y ) | y=log2 (x-1) }

C. M={ ( x y ) | y=x2-2x+2 } D. M={ ( x y ) | y=cosx }

【答案】D

【解析】

根据理想集合的定义利用对于任意,存在,使得成立逐一验证结合排除法可得结果.

是以轴为渐近线的双曲线渐近线的夹角为,在同一支上任意,不存在满足理想集合的定义;对任意在另一支上也不存在使得成立不满足理想集合的定义不是理想集合”,排除

上当点时,若,,,但函数的定义域为此时,不成立,不满足理想集合的定义不是理想集合”,排除

当点时,若,不成立不满足理想集合的定义不是理想集合”,排除.

,故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店

第一天售出但第二天未售出的商品有______种;

这三天售出的商品最少有_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣|x|+2a﹣1(a为实常数).

(1)若a=1,求f(x)=3的解;

(2)求f(x)在区间[1,2]的最小值为g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的定义域为R,且满足

(1)f(1)=3

(2)对于任意的,总有

(3)对于任意的

(I)求f(0)及f(-1)的值

(II)求证:函数y=f(x)-1为奇函数

(III)若,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.

(1)证明PA∥平面BDE;
(2)证明:DE⊥面PBC;
(3)求直线AB与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(

A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),则实数a的取值范围为(
A.[﹣ ]
B.[﹣ ]
C.[﹣ ]
D.[﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 若对任意的正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2ωx+2 sinωxcosωx﹣cos2ωx(ω>0),f(x)的图象相邻两条对称轴的距离为
(1)求f( )的值;
(2)将f(x)的图象上所有点向左平移m(m>0)个长度单位,得到y=g(x)的图象,若y=g(x)图象的一个对称中心为( ,0),当m取得最小值时,求g(x)的单调递增区间.

查看答案和解析>>

同步练习册答案