12£®ÈôÍÖÔ²${C_1}£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¹ýµã£¨2£¬1£©£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬F1£¬F2·Ö±ðΪÆä×ó¡¢ÓÒ½¹µã£®
£¨1£©ÈôµãPÓëF1£¬F2µÄ¾àÀëÖ®±ÈΪ$\frac{1}{3}$£¬ÇóÖ±Ïß$x-\sqrt{2}y+\sqrt{3}=0$±»µãPËùÔÚµÄÇúÏßC2½ØµÃµÄÏÒ³¤£»
£¨2£©ÉèA1£¬A2·Ö±ðΪÍÖÔ²C1µÄ×ó¡¢ÓÒ¶¥µã£¬QΪC1ÉÏÒìÓÚA1£¬A2µÄÈÎÒâÒ»µã£¬Ö±ÏßA1Q½»C1µÄÓÒ×¼ÏßÓÚµãM£¬Ö±ÏßA2Q½»C1µÄÓÒ×¼ÏßÓÚµãN£¬ÊÔÎÊ$\overrightarrow{M{F_2}}•\overrightarrow{N{F_2}}$ÊÇ·ñΪ¶¨Öµ£¬ÈôÊÇ£¬Çó³öÆ䶨ֵ£¬Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄÐÔÖÊÇó³öa£¬b£¬cµÄÖµ£¬´Ó¶øÇó³öÇúÏßC2µÄ·½³Ì£¬½ø¶øÇó³öÏÒ³¤¼´¿É£»
£¨2£©·Ö±ðÇó³öÖ±ÏßA1QºÍÖ±ÏßA2QµÄ·½³Ì£¬Çó³öµãM£¬NµÄ×ø±ê£¬´Ó¶øÇó³ö$\overrightarrow{M{F_2}}•\overrightarrow{N{F_2}}$£¬Åжϼ´¿É£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬£¨a£¾b£¾0£©¹ýµã£¨2£¬1£©£¬
¡à$\frac{4}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1¢Ù£¬ÓÖÆäÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬
¡à$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬$\frac{{c}^{2}}{{a}^{2}}$=$\frac{1}{2}$£¬$\frac{{a}^{2}{-b}^{2}}{{a}^{2}}$=$\frac{1}{2}$£¬$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{2}$£¬
¡àb2=$\frac{1}{2}$a2¢Ú£¬
°Ñ¢Ú´úÈë¢ÙµÃ£ºa2=6¢Û£¬
°Ñ¢Û´úÈë¢ÚµÃ£ºb2=3£¬
¡àÍÖÔ²C1µÄ·½³ÌΪ$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1£¬Æä½¹µãÔÚxÖáÉÏ£¬
ÓÖc=$\sqrt{{a}^{2}{-b}^{2}}$=$\sqrt{6-3}$=$\sqrt{3}$£¬
¡àÆä×óÓÒ½¹µãµÄ×ø±ê·Ö±ðΪF1£¨-$\sqrt{3}$£¬0£©£¬F2£¨$\sqrt{3}$£¬0£©£¬
ÉèµãPµÄ×ø±êΪP£¨x£¬y£©£¬
ÓÉÒÑÖªÌõ¼þµÃ£º$\frac{\sqrt{{£¨x+\sqrt{3}£©}^{2}{+y}^{2}}}{\sqrt{{£¨x-\sqrt{3}£©}^{2}{+y}^{2}}}$=$\frac{1}{3}$£¬»¯¼òµÃ£º2x2+2y2+5$\sqrt{3}$x+6=0£¬
¡àµãPËùÔÚµÄÇúÏßC2µÄ·½³ÌΪ£º2x2+2y2+5$\sqrt{3}$x+6=0£¬¼´${£¨x+\frac{5\sqrt{3}}{4}£©}^{2}$+y2=${£¨\frac{3\sqrt{3}}{4}£©}^{2}$£¬
ÇúÏßC2ΪԲ£¬Ô²ÐÄ×ø±êΪO¡ä£¨-$\frac{5\sqrt{3}}{4}$£¬0£©£¬°ë¾¶r=$\frac{3\sqrt{3}}{4}$£¬
ÉèÔ²ÐÄO¡äµ½Ö±Ïßx-$\sqrt{2}$y+$\sqrt{3}$=0µÄ¾àÀëΪd=$\frac{|-\frac{5\sqrt{3}}{4}-0+\sqrt{3}|}{\sqrt{3}}$=$\frac{1}{4}$£¬
¡àÖ±Ïßx-$\sqrt{2}$y+$\sqrt{3}$=0±»ÇúÏßC2Ëù½ØÏÒ³¤Îª2¡Á$\sqrt{{£¨\frac{3\sqrt{3}}{4}£©}^{2}{-£¨\frac{1}{4}£©}^{2}}$=$\frac{\sqrt{26}}{2}$£¬£»
£¨2£©Ö¤Ã÷£ºÉèQ£¨x0£¬y0£©£¬£¨y0¡Ù0£©£¬
ÓÉ£¨1£©µÄ½áÂÛ¿ÉÖªA1£¨-$\sqrt{6}$£¬0£©£¬A2£¨$\sqrt{6}$£¬0£©£¬F2£¨$\sqrt{3}$£¬0£©£¬
ÍÖÔ²C2µÄÓÒ×¼Ïß·½³ÌΪx=2$\sqrt{3}$£¬
¡àÖ±ÏßA1QµÄ·½³ÌΪy=$\frac{{y}_{0}}{{x}_{0}+\sqrt{6}}$£¨x+$\sqrt{6}$£©£¬
Áîx=2$\sqrt{3}$£¬Ôòy=$\frac{{y}_{0}£¨2\sqrt{3}+\sqrt{6}£©}{{x}_{0}+\sqrt{6}}$
¡àµãMµÄ×ø±êΪM£¨2$\sqrt{3}$£¬$\frac{{y}_{0}£¨2\sqrt{3}+\sqrt{6}£©}{{x}_{0}+\sqrt{6}}$£©£¬
ͬÀí¿ÉµÃµãNµÄ×ø±êÊÇN£¨2$\sqrt{3}$£¬$\frac{{y}_{0}£¨2\sqrt{3}-\sqrt{6}£©}{{x}_{0}-\sqrt{6}}$£©£¬
¡ßµãQ£¨x0£¬y0£©£¨y0¡Ù0£©ÔÚÍÖÔ²C1ÉÏ£¬
¡à$\frac{{{x}_{0}}^{2}}{6}$+$\frac{{{y}_{0}}^{2}}{3}$=1£¬¼´${{x}_{0}}^{2}$+2${{y}_{0}}^{2}$=6£¬${{x}_{0}}^{2}$-6=-2${{y}_{0}}^{2}$£¬
¡à$\overrightarrow{M{F_2}}=£¨{\sqrt{3}£¬\frac{{{y_0}£¨2\sqrt{3}+\sqrt{6}£©}}{{{x_0}+\sqrt{6}}}}£©$£¬$\overrightarrow{N{F_2}}=£¨{\sqrt{3}£¬\frac{{{y_0}£¨2\sqrt{3}-\sqrt{6}£©}}{{{x_0}-\sqrt{6}}}}£©$£¬
¡à$\overrightarrow{M{F_2}}•\overrightarrow{N{F_2}}=3+\frac{6y_0^2}{x_0^2-6}=0$£¬
¡à$\overrightarrow{M{F_2}}•\overrightarrow{N{F_2}}$Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÎÊÌ⣬¿¼²éÖ±ÏߺÍԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊÇÒ»µÀ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚÅ×ÎïÏßy=x2ÉÏÇóÒ»µãM£¬Ê¹Ëüµ½Ö±Ïßy=2x-4µÄ¾àÀë×î¶Ì£¬ÔòMµãµÄ×ø±êΪ£¨1£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®µÈ²îÊýÁÐ{an}ÖУ¬a3=2£¬a5=7£¬Ôòa7=£¨¡¡¡¡£©
A£®10B£®20C£®16D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈçͼÊÇÒ»¸öËã·¨µÄα´úÂ룬ÔòÊä³öiµÄֵΪ5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ö±½ÇÈý½ÇÐÎABCÖУ¬¡ÏC=90¡ã£¬¡ÏA=60¡ã£¬AB=6£¬µãMÊÇ¡÷ABCµÄÄÚÐÄ£¬$|{\overrightarrow{BM}+\overrightarrow{MC}-\overrightarrow{BA}}|$=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô¹ØÓÚxµÄ²»µÈʽxa2-2xa-3£¼0ÔÚÇø¼ä[-1£¬1]ÉϺã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-1£¬1]B£®[-1£¬3]C£®£¨-1£¬1£©D£®£¨-1£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬a1=2ÇÒ4Sn=an•an+1£¬£¨n¡ÊN*£©£¬ÊýÁÐ{bn}ÖУ¬${b_1}=\frac{1}{4}$£¬ÇÒbn+1=$\frac{n{b}_{n}}{£¨n+1£©-{b}_{n}}$£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éè${c_n}=\frac{a_n}{{{2^{\frac{1}{{3{b_n}}}+\frac{2}{3}}}}}$£¬Çó{cn}µÄÇ°nÏîºÍTn£»
£¨3£©Ö¤Ã÷£º¶ÔÒ»ÇÐn¡ÊN*£¬$\sum_{i=1}^n{\frac{{3•{2^{{a_i}-2}}}}{{{{£¨{2^{a_i}}-1£©}^2}}}£¼\frac{2}{3}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®½âÏÂÁв»µÈʽ£º
£¨1£©-3x2-2x+8¡Ý0£»
£¨2£©0£¼x2-x-2¡Ü4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÃüÌâp£º¡°·½³Ìx2+$\frac{{y}^{2}}{m}$=1±íʾ½¹µãÔÚyÖáÉϵÄÍÖÔ²¡±£»ÃüÌâq£º¶ÔÈÎÒâʵÊýx¶¼ÓÐmx2+mx+1£¾0ºã³ÉÁ¢£®Èôp¡ÄqÊǼÙÃüÌ⣬p¡ÅqÊÇÕæÃüÌ⣬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸