精英家教网 > 高中数学 > 题目详情

【题目】下表是某公司月份研发费用(百万元)和产品销量 (万台)的具体数据:

研发费用(百万元)

产品销量(万台)

1)根据数据可知之间存在线性相关关系,用线性相关系数说明之间的相关性强弱程度

2)求出的线性回归方程(系数精确到),并估计当研发费用为(百万元)时该产品的销量.

参考数据:

参照公式:相关系数,其回归直线中的

【答案】1之间的具有强相关关系;(2万台.

【解析】

1)估计相关系数,先求得,再结合提供的数据代入公式求解.

2)根据(1)的数据,求得,得到,写出回归方程,再将代入回归方程求解.

1)因为

所以

所以之间的具有强相关关系;

2)因为

所以

所以,当时,

所以当研发费用为(百万元)时,该产品的销量约为万台.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1)讨论函数的单调性;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,中国的国内生产总值(GDP)已经达到100亿元人民币,位居世界第二,这其中实体经济的贡献功不可没,实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:

根据以上数据绘制了如下的散点图

现考虑用反比例函数模型和指数函数模型分别对两个变量关系进行拟合,为此变换如下:令,则,即也满足线性关系,令,则,即也满足线线关系,这样就可以使用最小二乘法求得非线性回归方程,已求得用指数函数模型拟合的回归方程为的相关系数,其他参考数据如下(其中

1)求指数函数模型和反比例函数模型中关于的回归方程;

2)试计算的相关系数,并用相关系数判断:选择反比例函数和指数函数两个模型中哪一个拟合效果更好(精确到0.01)?

3)根据(2)小题的选择结果,该企业采用订单生产模式(即根据订单数量进行生产,产品全部售出),根据市场调研数据,该产品定价为100元时得到签到订单的情况如下表:

订单数(千件)

1

2

3

4

5

6

7

8

9

10

11

概率

已知每件产品的原来成本为10元,试估算企业的利润是多少?(精确到1千元)

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别是:相关系数:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,丙所得为(

A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,沿翻折到的位置,使平面平面.

(1)求证: 平面

(2)若在线段上有一点满足,且二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是,且以两焦点间的线段为直径的圆的内接正方形面积是.

1)求椭圆的方程;

2)过左焦点的直线相交于两点,直线,过作垂直于的直线与直线交于点,求的最小值和此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为为椭圆的右焦点,且椭圆上的点到的距离的最小值为,过作直线交椭圆两点,点.

1)求椭圆的方程;

2)是否存在这样的直线,使得以为邻边的平行四边形为矩形?若存在,求出直线的斜率;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将120202020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为贯彻落实党中央全面建设小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康.现从这些尚未实现小康的家庭中随机抽取50户,得到这50户家庭2018年的家庭人均年纯收入的频率分布直方图,如图.

注:在频率分布直方图中,同一组数据用该区间的中点值作代表.

1)估计该地区尚未实现小康的家庭2018年家庭人均年纯收入的平均值;

220197月,为估计该地能否在2020年全面实现小康,收集了当地最贫困的一户家庭201916月的人均月纯收入的数据,作出散点图如下.

根据相关性分析,发现其家庭人均月纯收入与时间代码之间具有较强的线性相关关系(记20191月、2月……分别为,…,依此类推).试预测该家庭能否在2020年实现小康生活.

参考数据:.

参考公式:线性回归方程中,.

查看答案和解析>>

同步练习册答案