精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1-|x-1|,x∈(-∞,2)
1
2
f(x-2),x∈[2,+∞)
,则函数xf(x)-1零点的个数为
 
考点:函数与方程的综合运用
专题:函数的性质及应用
分析:由F(x)=0得f(x)=
1
x
,然后分别作出函数f(x)与y=
1
x
的图象,利用数形结合即可得到函数零点的个数.
解答: 解:xf(x)-1=0,可得f(x)-
1
x
=0,
F(x)=f(x)-
1
x
=0得f(x)=
1
x
,然后分别作出函数f(x)与y=g(x)=
1
x
的图象如图:
∵当x≥2时,f(x)=
1
2
f(x-2),
∴f(1)=1,g(1)=1,
f(1)=1,g(1)=1,
f(3)=
1
2
f(1)=
1
2
,g(3)=
1
3

f(5)=
1
2
f(3)=
1
4
,g(5)=
1
5

f(7)=
1
2
f(5)=
1
8
,g(7)=
1
7

∴当x>7时,f(x)<
1
x

由图象可知两个图象的交点个数为6个.
故答案为:6.
点评:本题主要考查方程和函数之间的关系,根据函数零点个数的判断,转化为两个函数图象的交点问题是解决本题的关键,利用数形结合是解决本题的基本思想.本题难度较大,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数fA(x)的定义域为A=[a,b),且fA(x)=(
x
a
+
b
x
-1)2-
2b
a
+1,其中a、b为任意正实数,且a<b.
(1)当A=[4,7)时,研究fA(x)的单调性(不必证明);
(2)写出fA(x)的单调区间(不必证明),并求函数fA(x)的最小值、最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

棱长为1的正方体ABCD-A1B1C1D1的顶点都在球面上,则AC1的长是
 
,球的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在坐标轴上的双曲线E过点P(-3
2
,4),它的渐近线方程为y=±
4
3
x

(1)求双曲线E的标准方程;
(2)若直线y=x+1与E交于A,B两点,求|AB|.(要求结果化到最简)

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)=ax2+bx+c(a≠0),满足f(x+2)-f(x)=16x且f(0)=2.
(1)求函数f(x)的解析式;
(2)若存在x∈[1,3],使不等式f(x)>2x+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项的和为Sn,且对任意正整数n,都有a2a8=2a3a6,S5=-62,则a1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数3+i,-4-2i,-5i,6,
5
2
-3i.在复平面内画出这些复数与它们的共轭复数所对应的向量,并求出它们的模.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是等比数列,a1=C
 
3m
2m+3
•A
 
1
m-2
,公比q是(x+
1
4x2
4的展开式中的第二项
(1)用n、x表示通项an与前n项和Sn
(2)当x=1时,求An=C
 
1
n
S1+C
 
2
n
S2+…+C
 
n
n
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公比大于1的等比数列,Tn是{an}的前n项和,对任意n∈N*有an+1=Tn+
3
2
an+
1
2
,数列{bn}满足bn=
1
n
(log3a1+log3a2+…+log3an+log3t)(n∈N*).
(1)求数列{an}的通项公式;
(2)若{bn}为等差数列,求t的值及数列{
1
bn+1bn+3
}的前n项和Sn

查看答案和解析>>

同步练习册答案